Exercise 12.8 (Solution) for Class XI

Question # 1 Show that

(i)
$$r = 4R \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \sin \frac{\gamma}{2}$$
 (ii) $s = 4R \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2}$

Solution

Solution
(i) R.H.S =
$$4R \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \sin \frac{\gamma}{2}$$

$$= 4R \sqrt{\frac{(s-b)(s-c)}{bc}} \sqrt{\frac{(s-a)(s-c)}{ac}} \sqrt{\frac{(s-a)(s-b)}{ab}}$$

$$= 4R \sqrt{\frac{(s-b)(s-c)(s-a)(s-c)(s-a)(s-b)}{(bc)(ac)(ab)}}$$

$$= 4R \sqrt{\frac{(s-a)^2(s-b)^2(s-c)^2}{a^2b^2c^2}}$$

$$= 4R \frac{(s-a)(s-b)(s-c)}{abc}$$

$$= 4\left(\frac{abc}{4\Delta}\right) \frac{(s-a)(s-b)(s-c)}{abc} \qquad \because R = \frac{abc}{4\Delta}$$

$$= \frac{(s-a)(s-b)(s-c)}{\Delta}$$

$$= \frac{s(s-a)(s-b)(s-c)}{s\Delta}$$

$$= \frac{\Delta^2}{s\Delta} \qquad \because \Delta = \sqrt{s(s-a)(s-b)(s-c)}$$

$$= \frac{\Delta}{s}$$

$$= \frac{\Delta}{s}$$

Solution

=r = I.H.S

= s = L.H.S

(ii) R.H.S =
$$4R\cos\frac{\alpha}{2}\cos\frac{\beta}{2}\cos\frac{\gamma}{2}$$

= $4R\sqrt{\frac{s(s-a)}{bc}\sqrt{\frac{s(s-b)}{ac}\sqrt{\frac{s(s-c)}{ab}}}}$
= $4R\sqrt{\frac{s^2\cdot s(s-a)(s-b)(s-c)}{(bc)(ac)(ab)}}$
= $4R\sqrt{\frac{s^2\Delta^2}{a^2b^2c^2}}$ $\therefore \Delta = \sqrt{s(s-a)(s-b)(s-c)}$
= $4R\frac{s\Delta}{abc}$
= $4\left(\frac{abc}{4\Delta}\right)s\frac{\Delta}{abc}$ $\therefore R = \frac{abc}{4\Delta}$

(iii) R.H.S =
$$4Rr \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2}$$

= $4Rr \sqrt{\frac{s(s-a)}{bc}} \cdot \sqrt{\frac{s(s-b)}{ca}} \cdot \sqrt{\frac{s(s-c)}{ab}}$
= $4Rr \sqrt{\frac{s(s-a) \cdot s(s-b) \cdot s(s-c)}{(bc)(ac)(ab)}}$
= $4Rr \sqrt{\frac{s^2 \cdot s(s-a)(s-b)(s-c)}{a^2b^2c^2}}$
= $4Rr \sqrt{\frac{s^2 \cdot \Delta^2}{a^2b^2c^2}}$
= $4Rr \frac{s\Delta}{abc}$
= $4\left(\frac{abc}{4\Delta}\right)\left(\frac{\Delta}{s}\right)\frac{s\Delta}{abc}$
= Δ = L.H.S

$$\because \cos \frac{\alpha}{2} = \sqrt{\frac{s(s-a)}{bc}}$$

$$\cos \frac{\beta}{2} = \sqrt{\frac{s(s-b)}{ac}}$$

$$\cos \frac{\gamma}{2} = \sqrt{\frac{s(s-c)}{ab}}$$

$$\therefore \Delta = \sqrt{s(s-a)(s-b)(s-c)}$$
$$\Delta^2 = s(s-a)(s-b)(s-c)$$

$$\therefore R = \frac{abc}{4\Delta} \qquad r = \frac{\Delta}{s}$$

Question #9 Show that

(i)
$$\frac{1}{2rR} = \frac{1}{ab} + \frac{1}{bc} + \frac{1}{ca}$$

 $= \frac{1}{ab} + \frac{1}{bc} + \frac{1}{ca} = \text{R.H.S}$

Solution

(i) L.H.S
$$= \frac{1}{2rR}$$

$$= \frac{1}{2\left(\frac{\Delta}{s}\right)\left(\frac{abc}{4\Delta}\right)}$$

$$= \frac{4s\Delta}{2\Delta abc}$$

$$= \frac{2s}{abc}$$

$$= \frac{a+b+c}{abc}$$

$$= \frac{a}{abc} + \frac{b}{abc} + \frac{c}{abc}$$

$$= \frac{1}{bc} + \frac{1}{ac} + \frac{1}{ab}$$

(ii)
$$\frac{1}{r} = \frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3}$$

$$r = \frac{\Delta}{s}$$
 $R = \frac{abc}{4\Delta}$

$$\therefore 2s = a + b + c$$

(ii) R.H.S
$$= \frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3}$$

$$= \frac{1}{\frac{\Delta}{s-a}} + \frac{1}{\frac{\Delta}{s-b}} + \frac{1}{\frac{\Delta}{s-c}}$$

$$= \frac{s-a}{\Delta} + \frac{s-b}{\Delta} + \frac{s-c}{\Delta}$$

$$= \frac{s-a+s-b+s-c}{\Delta}$$

$$= \frac{3s-(a+b+c)}{\Delta}$$

$$= \frac{3s-2s}{\Delta}$$

L.H.S

$$r_1 = \frac{\Delta}{s - a}$$

$$r_2 = \frac{\Delta}{s - b}$$

$$r_3 = \frac{\Delta}{s - c}$$

$$\therefore 2s = a + b + c$$

$$r = \frac{\Delta}{s}$$

Question # 10 Prove that:

(i)
$$r = \frac{a \sin \frac{\beta}{2} \sin \frac{\gamma}{2}}{\cos \frac{\alpha}{2}}$$

(ii)
$$r = \frac{b \sin \frac{\alpha}{2} \sin \frac{\gamma}{2}}{\cos \frac{\beta}{2}}$$

$$= \frac{a \sin \frac{\beta}{2} \sin \frac{\gamma}{2}}{\cos \frac{\alpha}{2}}$$

$$= a \sqrt{\frac{(s-a)(s-c)}{ac}} \sqrt{\frac{(s-a)(s-b)}{ab}} \frac{1}{\sqrt{\frac{s(s-a)}{bc}}}$$

$$= a \sqrt{\frac{(s-a)(s-c)}{ac}} \sqrt{\frac{(s-a)(s-b)}{ab}} \sqrt{\frac{bc}{s(s-a)}}$$

$$= a\sqrt{\frac{(s-a)(s-c)(s-a)(s-b)(bc)}{(ac)(ab)s(s-a)}}$$

$$= a\sqrt{\frac{(s-a)(s-b)(s-c)}{a^2s}} = a\sqrt{\frac{s(s-a)(s-b)(s-c)}{a^2s^2}}$$

$$= a\sqrt{\frac{s(s-a)(s-b)(s-c)}{a^2s}} = \frac{\Delta}{s} = r = \text{L.H.S}$$

(ii) R.H.S
$$= \frac{b \sin \frac{\alpha}{2} \sin \frac{\gamma}{2}}{\cos \frac{\beta}{2}}$$

Question # 11 Prove that: $abc(\sin \alpha + \sin \beta + \sin \gamma) = 4\Delta s$

Solution

$$\frac{sonaton}{L.H.S} = abc \left(\sin \alpha + \sin \beta + \sin \gamma \right)
= abc \left(\frac{2\Delta}{bc} + \frac{2\Delta}{ac} + \frac{2\Delta}{ab} \right)
= abc \left(\frac{2\Delta a + 2\Delta b + 2\Delta c}{abc} \right)
= 2\Delta a + 2\Delta b + 2\Delta c
= 2\Delta (a+b+c)
= 2\Delta (2s) = 4\Delta s = R.H.S$$

$$\therefore \Delta = \frac{1}{2}ab\sin \gamma = \frac{1}{2}bc\sin \alpha = \frac{1}{2}ca\sin \beta
\Rightarrow \sin \gamma = \frac{2\Delta}{ab}, \sin \alpha = \frac{2\Delta}{bc}, \sin \beta = \frac{2\Delta}{ca}$$

 $= 2\Delta(2s) = 4\Delta s = \text{R.H.S}$ 2s = a + b + cQuestion # 12 Prove that: (i) $(r_1 + r_2) \tan \frac{\gamma}{2} = c$ (ii) $(r_3 - r) \cot \frac{\gamma}{2} = c$

$$\begin{aligned}
\frac{Solution}{(i)} & \text{L.H.S} &= (r_1 + r_2) \tan \frac{\gamma}{2} \\
&= \left(\frac{\Delta}{s - a} + \frac{\Delta}{s - b}\right) \sqrt{\frac{(s - a)(s - b)}{s(s - c)}} & \because \tan \frac{\gamma}{2} = \sqrt{\frac{(s - a)(s - b)}{s(s - c)}} \\
&= \left(\frac{\Delta(s - b) + \Delta(s - a)}{(s - a)(s - b)}\right) \sqrt{\frac{(s - a)(s - b)}{s(s - c)}} \cdot \frac{s(s - c)}{s(s - c)} \\
&= \Delta \left(\frac{s - b + s - a}{(s - a)(s - b)}\right) \sqrt{\frac{s(s - a)(s - b)(s - c)}{s^2(s - c)^2}} \\
&= \Delta \left(\frac{2s - a - b}{(s - a)(s - b)}\right) \sqrt{\frac{\Delta^2}{s^2(s - c)^2}} & \because 2s = a + b + c \\
&= \Delta \left(\frac{a + b + c - a - b}{(s - a)(s - b)}\right) \frac{\Delta}{s(s - c)} \\
&= \frac{\Delta^2 c}{s(s - a)(s - b)(s - c)} &= \frac{\Delta^2 c}{\Delta^2} = c = \text{R.H.S} & \because \Delta = \sqrt{s(s - a)(s - b)(s - c)} \end{aligned}$$

(ii) L.H.S =
$$(r_3 - r)\cot\frac{\gamma}{2}$$

= $\left(\frac{\Delta}{s - c} - \frac{\Delta}{s}\right)\frac{1}{\tan\frac{\gamma}{2}} = \Delta\left(\frac{1}{s - c} - \frac{1}{s}\right)\frac{1}{\sqrt{\frac{(s - a)(s - b)}{s(s - c)}}}$
= $\Delta\left(\frac{s - (s - c)}{s(s - c)}\right)\sqrt{\frac{s(s - c)}{(s - a)(s - b)}}$ $\therefore \tan\frac{\gamma}{2} = \sqrt{\frac{(s - a)(s - b)}{s(s - c)}}$
= $\Delta\left(\frac{c}{s(s - c)}\right)\sqrt{\frac{s(s - c)}{(s - a)(s - b)}\cdot\frac{s(s - c)}{s(s - c)}}$
= $\Delta\left(\frac{c}{s(s - c)}\right)\sqrt{\frac{s(s - c)}{s(s - a)(s - b)(s - c)}}$
= $\Delta\left(\frac{c}{s(s - c)}\right)\sqrt{\frac{s(s - c)}{s(s - a)(s - b)(s - c)}}$
= $\Delta\left(\frac{c}{s(s - c)}\right)\sqrt{\frac{s(s - c)}{s(s - a)(s - b)(s - c)}}$
 $\Rightarrow \Delta\left(\frac{c}{s(s - c)}\right)\sqrt{\frac{s(s - c)}{s(s - a)(s - b)(s - c)}}$
 $\Rightarrow \Delta\left(\frac{c}{s(s - c)}\right)\sqrt{\frac{s(s - c)}{s(s - a)(s - b)(s - c)}}$

Question # 2 Show that:

$$r = a \sin \frac{\beta}{2} \sin \frac{\gamma}{2} \sec \frac{\alpha}{2} = b \sin \frac{\gamma}{2} \sin \frac{\alpha}{2} \sec \frac{\beta}{2} = c \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \sec \frac{\gamma}{2}$$

Solution

take
$$a\sin\frac{\beta}{2}\sin\frac{\gamma}{2}\sec\frac{\alpha}{2}$$

 $=a\sin\frac{\beta}{2}\sin\frac{\gamma}{2}\frac{1}{\cos\frac{\alpha}{2}}$
 $=a\sqrt{\frac{(s-a)(s-c)}{ac}}\sqrt{\frac{(s-a)(s-b)}{ab}}\frac{1}{\sqrt{\frac{s(s-a)}{bc}}}$
 $=a\sqrt{\frac{(s-a)(s-c)}{ac}}\sqrt{\frac{(s-a)(s-b)}{ab}}\sqrt{\frac{bc}{s(s-a)}}$
 $=a\sqrt{\frac{(s-a)(s-c)(s-a)(s-b)(bc)}{(ac)(ab)s(s-a)}}$
 $=a\sqrt{\frac{(s-a)(s-b)(s-c)}{a^2s}}=a\sqrt{\frac{s(s-a)(s-b)(s-c)}{a^2s^2}}$
 $=a\sqrt{\frac{s(s-a)(s-b)(s-c)}{a^2s}}=a\sqrt{\frac{s(s-a)(s-b)(s-c)}{a^2s^2}}$
 $=a\sqrt{\frac{s(s-a)(s-b)(s-c)}{as}}=a\sqrt{\frac{s(s-a)(s-b)(s-c)}{a^2s^2}}$
 $=a\sqrt{\frac{s(s-a)(s-b)(s-c)}{as}}=a\sqrt{\frac{s(s-a)(s-b)(s-c)}{a^2s^2}}$
 $=a\sqrt{\frac{s(s-a)(s-b)(s-c)}{as}}=a\sqrt{\frac{s(s-a)(s-b)(s-c)}{a^2s^2}}$
 $=a\sqrt{\frac{s(s-a)(s-b)(s-c)}{as}}=a\sqrt{\frac{s(s-a)(s-b)(s-c)}{a^2s^2}}$

$$\Rightarrow a \sin \frac{\beta}{2} \sin \frac{\gamma}{2} \sec \frac{\alpha}{2} = r \dots (i)$$

Similarly prove yourself

$$b\sin\frac{\gamma}{2}\sin\frac{\alpha}{2}\sec\frac{\beta}{2} = r \dots (ii)$$

$$c\sin\frac{\alpha}{2}\sin\frac{\beta}{2}\sec\frac{\gamma}{2} = r \dots (iii)$$

From (i), (ii) and (iii)

$$r = a\sin\frac{\beta}{2}\sin\frac{\gamma}{2}\sec\frac{\alpha}{2} = b\sin\frac{\gamma}{2}\sin\frac{\alpha}{2}\sec\frac{\beta}{2} = c\sin\frac{\alpha}{2}\sin\frac{\beta}{2}\sec\frac{\gamma}{2}$$

Question #3 Show that:

(i) $r_1 = 4R\sin\frac{\alpha}{2}\cos\frac{\beta}{2}\cos\frac{\gamma}{2}$ (ii) $r_2 = 4R\cos\frac{\alpha}{2}\sin\frac{\beta}{2}\cos\frac{\gamma}{2}$ (iii) $r_3 = 4R\cos\frac{\alpha}{2}\cos\frac{\beta}{2}\sin\frac{\gamma}{2}$

Solution

(i) R.H.S =
$$4R \sin \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2}$$

$$= 4R \sqrt{\frac{(s-b)(s-c)}{bc}} \sqrt{\frac{s(s-b)}{ac}} \sqrt{\frac{s(s-c)}{ab}}$$

$$= 4R \sqrt{\frac{(s-b)(s-c)s(s-b)s(s-c)}{(bc)(ac)(ab)}}$$

$$= 4R \sqrt{\frac{s^2(s-b)^2(s-c)^2}{a^2b^2c^2}}$$

$$= 4R \frac{s(s-b)(s-c)}{abc}$$

$$= 4\frac{abc}{4\Delta} \frac{s(s-b)(s-c)}{abc} \cdot \frac{(s-a)}{(s-a)} \qquad \because R = \frac{abc}{4\Delta}$$

$$= \frac{s(s-a)(s-b)(s-c)}{\Delta(s-a)}$$

$$= \frac{\Delta^2}{\Delta(s-a)}$$

$$= \frac{\Delta}{(s-a)}$$

$$= r_1 = \text{R.H.S}$$

(ii) & (iii)

 $\therefore \tan \frac{\alpha}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$

 $\Delta = \sqrt{s(s-a)(s-b)(s-c)}$

 $\Lambda^2 = s(s-a)(s-b)(s-c)$

Question # 4 Show that:

(i)
$$r_1 = s \tan \frac{\alpha}{2}$$

(i)
$$r_1 = s \tan \frac{\alpha}{2}$$
 (ii) $r_2 = s \tan \frac{\beta}{2}$ (iii) $r_3 = s \tan \frac{\gamma}{2}$

Solution

Solution
(i) R.H.S =
$$s \tan \frac{\alpha}{2}$$

$$= s \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$$

$$= s \sqrt{\frac{(s-b)(s-c)}{s(s-a)}} \cdot \frac{s(s-a)}{s(s-a)}$$

$$= s \sqrt{\frac{s(s-a)(s-b)(s-c)}{s^2(s-a)^2}}$$

$$= s \sqrt{\frac{\Delta^2}{s^2(s-a)^2}}$$

$$\Delta$$

$$\frac{s}{s} \frac{\Delta}{s(s-a)}$$

$$\frac{\Delta}{(s-a)}$$

$$\therefore r_1 = \frac{\Delta}{s-a}$$

(ii) & (iii)

= L.H.S

Question # 5 Prove that:

(i)
$$r_1 r_2 + r_2 r_3 + r_3 r_1 = s^2$$

(ii)
$$r r_1 r_2 r_3 = \Delta^2$$

(iii)
$$r_1 + r_2 + r_3 - r = 4R$$

(iv)
$$r_1 r_2 r_3 = r s^2$$

Solution

(i) L.H.S =
$$r_1 r_2 + r_2 r_3 + r_3 r_1$$
 $\therefore r_1 = \frac{\Delta}{s-a}$

$$= \left(\frac{\Delta}{s-a}\right) \left(\frac{\Delta}{s-b}\right) + \left(\frac{\Delta}{s-b}\right) \left(\frac{\Delta}{s-c}\right) + \left(\frac{\Delta}{s-c}\right) \left(\frac{\Delta}{s-a}\right)$$

$$= \frac{\Delta^2}{(s-a)(s-b)} + \frac{\Delta^2}{(s-b)(s-c)} + \frac{\Delta^2}{(s-c)(s-a)}$$

$$= \Delta^2 \left(\frac{1}{(s-a)(s-b)} + \frac{1}{(s-b)(s-c)} + \frac{1}{(s-c)(s-a)}\right)$$

$$= \Delta^2 \left(\frac{s-c+s-a+s-b}{(s-a)(s-b)(s-c)}\right)$$

$$= \Delta^2 \left(\frac{3s-(a+b+c)}{(s-a)(s-b)(s-c)}\right)$$

$$= \Delta^2 \left(\frac{3s-2s}{(s-a)(s-b)(s-c)}\right)$$

$$= \Delta^2 \left(\frac{s}{(s-a)(s-b)(s-c)}\right)$$

$$= \Delta^2 \left(\frac{s}{(s-a)(s-b)(s-c)}\right)$$

$$= \Delta^2 \left(\frac{s}{s(s-a)(s-b)(s-c)}\right)$$

$$= \Delta^2 \left(\frac{s}{s(s-a)(s-b)(s-c)}\right)$$

$$= \Delta^2 \left(\frac{s}{s(s-a)(s-b)(s-c)}\right)$$

$$= \Delta^2 \left(\frac{s}{\sqrt{s}}\right)$$

(ii) L.H.S =
$$r r_1 r_2 r_3$$

$$= \left(\frac{\Delta}{s}\right) \left(\frac{\Delta}{s-a}\right) \left(\frac{\Delta}{s-b}\right) \left(\frac{\Delta}{s-c}\right)$$

$$= \frac{\Delta^4}{s(s-a)(s-b)(s-c)}$$

$$= \frac{\Delta^4}{\Delta^2}$$

$$= \Delta^2 = \text{R.H.S}$$

 $=s^2 = R.H.S$

$$\therefore r = \frac{\Delta}{s} \qquad r_1 = \frac{\Delta}{s - a}$$
$$r_2 = \frac{\Delta}{s - b} \qquad r_3 = \frac{\Delta}{s - c}$$

$$\therefore \Delta = \sqrt{s(s-a)(s-b)(s-c)}$$
$$\Delta^2 = s(s-a)(s-b)(s-c)$$

(iii) L.H.S =
$$r_1 + r_2 + r_3 - r$$

= $\frac{\Delta}{s - a} + \frac{\Delta}{s - b} + \frac{\Delta}{s - c} - \frac{\Delta}{s}$
= $\Delta \left(\frac{1}{s - a} + \frac{1}{s - b} + \frac{1}{s - c} - \frac{1}{s}\right)$
= $\Delta \left(\frac{(s - b) + (s - a)}{(s - a)(s - b)} + \frac{s - (s - c)}{s(s - c)}\right)$
= $\Delta \left(\frac{2s - b - a}{(s - a)(s - b)} + \frac{s - s + c}{s(s - c)}\right)$
= $\Delta \left(\frac{a + b + c - b - a}{(s - a)(s - b)} + \frac{c}{s(s - c)}\right)$
= $\Delta \left(\frac{c}{(s - a)(s - b)} + \frac{c}{s(s - c)}\right)$
= $c\Delta \left(\frac{1}{(s - a)(s - b)} + \frac{1}{s(s - c)}\right)$
= $c\Delta \left(\frac{s(s - c) - (s - a)(s - b)}{s(s - a)(s - b)(s - c)}\right)$
= $c\Delta \left(\frac{s^2 - sc + s^2 - as - bs + ab}{\Delta^2}\right)$
= $c\left(\frac{2s^2 - s(2s) + ab}{\Delta}\right)$
= $c\left(\frac{2s^2 - s(2s) + ab}{\Delta}\right)$
= $c\left(\frac{2s^2 - 2s^2 + ab}{\Delta}\right)$
= $c\left(\frac{2s^2 - 2s^2 + ab}{\Delta}\right)$
= $c\left(\frac{2s^2 - 2s^2 + ab}{\Delta}\right)$
= $c\left(\frac{3s - a}{(s - a)(s - b)(s - c)}\right)$
= $c\left(\frac{3s - a}{s(s - a)(s - b)(s - c)}\right)$
= $c\left(\frac{3s - a}{s(s - a)(s - b)(s - c)}\right)$
= $c\left(\frac{3s - a}{s(s - a)(s - b)(s - c)}\right)$
= $c\left(\frac{3s - a}{s(s - a)(s - b)(s - c)}\right)$

Question # 6 Find R, r, r_1, r_2 and r_3 , if measures of the sides of triangle ABC are

(i)
$$a=13$$
 , $b=14$, $c=15$

(ii)
$$a = 34$$
, $b = 20$, $c = 42$

Solution

(i)
$$a=13$$
, $b=14$, $c=15$

$$s = \frac{a+b+c}{2} = \frac{13+14+15}{2} = 21$$

$$\Delta = \sqrt{s(s-a)(s-b)(s-c)}$$

$$= \sqrt{21(21-13)(21-14)(21-15)}$$

$$= \sqrt{21(8)(7)(6)} = \sqrt{7056} = 84$$

Now
$$R = \frac{abc}{4\Delta} = \frac{(13)(14)(15)}{4(84)} = 8.125$$

 $r = \frac{\Delta}{s} = \frac{84}{21} = 4$
 $r_1 = \frac{\Delta}{s-a} = \frac{84}{8} = 10.5$
 $r_2 = \frac{\Delta}{s-b} = \frac{84}{7} = 12$
 $r_3 = \frac{\Delta}{s-c} = \frac{84}{6} = 14$

(ii)
$$a = 34$$
, $b = 20$, $c = 42$

Question # 7 Prove that in an equilateral triangle,

(i)
$$r: R: r_1 = 1:2:3$$

(ii)
$$r:R:r_1:r_2:r_3=1:2:3:3:3$$

Solution

(ii) In equilateral triangle all the sides are equal so a = b = c

Now
$$\Delta = \sqrt{s(s-a)(s-b)(s-c)}$$

$$= \sqrt{s(s-a)(s-a)(s-a)}$$

$$= \sqrt{s(s-a)^3}$$

$$= \sqrt{\frac{3a}{2} \left(\frac{1}{2}a\right)^3}$$

$$= \sqrt{\frac{3a}{2} \left(\frac{a^3}{8}\right)} = \sqrt{\frac{3a^4}{16}} = \frac{\sqrt{3}a^2}{4}$$

Now
$$r = \frac{\Delta}{s}$$

$$= \frac{\sqrt{3} a^2 / 4}{3a / 2} = \frac{\sqrt{3} a^2}{4} \cdot \frac{2}{3a} = \frac{\sqrt{3} a}{6}$$

Now

Now
$$r: R: r_1: r_2: r_3 = \frac{\sqrt{3}a}{6}: \frac{\sqrt{3}a}{3}: \frac{\sqrt{3}a}{2}: \frac{\sqrt{3}a}{2}: \frac{\sqrt{3}a}{2}$$

$$= 1 : 2 : 3 : 3 : 3 \times \text{ing by } \frac{6}{\sqrt{3}a}$$

$$\times$$
ing by $\frac{6}{\sqrt{3}a}$

 $s = \frac{a+b+c}{2} = \frac{a+a+a}{2} = \frac{3a}{2}$

 $s-a = \frac{3a}{2} - a = \left(\frac{3}{2} - 1\right)a = \frac{1}{2}a$

(i) Do yourself

Question #8 Prove that:

$$\overline{(i) \Delta} = r^2 \cot \frac{\alpha}{2} \cot \frac{\beta}{2} \cot \frac{\gamma}{2}$$

(ii)
$$r = s \tan \frac{\alpha}{2} \tan \frac{\beta}{2} \tan \frac{\gamma}{2}$$

(i)
$$\Delta = r^2 \cot \frac{\alpha}{2} \cot \frac{\beta}{2} \cot \frac{\gamma}{2}$$
 (ii) $r = s \tan \frac{\alpha}{2} \tan \frac{\beta}{2} \tan \frac{\gamma}{2}$ (iii) $\Delta = 4Rr \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2}$

Solution

(i) R.H.S =
$$r^2 \cot \frac{\alpha}{2} \cot \frac{\beta}{2} \cot \frac{\gamma}{2}$$

$$= r^2 \frac{1}{\tan \frac{\alpha}{2}} \cdot \frac{1}{\tan \frac{\beta}{2}} \cdot \frac{1}{\tan \frac{\gamma}{2}}$$

$$= r^2 \frac{1}{\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}} \cdot \sqrt{\frac{(s-a)(s-c)}{s(s-b)}} \cdot \sqrt{\frac{1}{\sqrt{(s-a)(s-b)}}}$$

$$= r^2 \sqrt{\frac{s(s-a)}{(s-b)(s-c)}} \cdot \sqrt{\frac{s(s-b)}{(s-a)(s-c)}} \cdot \sqrt{\frac{s(s-c)}{(s-a)(s-b)}}$$

$$= r^2 \sqrt{\frac{s^3(s-a)(s-b)(s-c)}{(s-a)^2(s-b)^2(s-c)^2}}$$

$$= r^2 \sqrt{\frac{s^3}{(s-a)(s-b)(s-c)}}$$

$$= r^2 \sqrt{\frac{s^3}{(s-a)(s-b)(s-c)}}$$

$$= r^2 \sqrt{\frac{s^4}{3\sqrt{2}}}$$

$$= r^2 \sqrt{\frac{s^4}{3\sqrt{2}}}$$

$$= r^2 \frac{s^2}{\Delta}$$

$$= \left(\frac{\Delta}{s}\right)^2 \frac{s^2}{\Delta} \quad \because r = \frac{\Delta}{s}$$

$$= \frac{\Delta^2}{s^2} \frac{s^2}{\Delta}$$

 $=\Delta = L.H.S$