Trigonometric Identities

Question \# 1 Find the values of $\sin 2 \alpha, \cos 2 \alpha$ and $\tan 2 \alpha$ when:
(i) $\quad \sin \alpha=\frac{12}{13}$
(ii) $\cos \alpha=\frac{3}{5}$

Solution

(i) $\sin \alpha=\frac{12}{13} ; \quad 0<\alpha<\frac{\pi}{2}$

$$
\begin{aligned}
\cos \alpha & =\sqrt{1-\sin ^{2} \alpha} \\
& =\sqrt{1-\left(\frac{12}{13}\right)^{2}} \\
& =\sqrt{1-\frac{144}{169}} \\
& =\sqrt{\frac{25}{169}} \Rightarrow \cos \alpha=\frac{5}{13}
\end{aligned}
$$

Since $\cos \alpha= \pm \sqrt{1-\sin ^{2} \alpha}$ As α is in the first quadrant so value of cos is +ive
and $\tan \alpha=\frac{\sin \alpha}{\cos \alpha}=\frac{12 / 13}{5 / 13} \Rightarrow \tan \alpha=\frac{12}{5}$

Now $\sin 2 \alpha=2 \sin \alpha \cos \alpha$

$$
=2\left(\frac{12}{13}\right)\left(\frac{5}{13}\right) \Rightarrow \sin 2 \alpha=\frac{120}{169}
$$

$$
\begin{aligned}
\cos 2 \alpha & =\cos ^{2} \alpha-\sin ^{2} \alpha \\
& =\left(\frac{5}{13}\right)^{2}-\left(\frac{12}{13}\right)^{2} \\
& =\frac{25}{169}-\frac{144}{169} \Rightarrow \cos 2 \alpha=\frac{119}{169}
\end{aligned}
$$

$$
\tan 2 \alpha=\frac{2 \alpha \tan }{1-\tan ^{2} \alpha}
$$

$$
=\frac{2(12 / 5)}{1-(12 / 5)^{2}}
$$

$$
=\frac{24 / 5}{1-144 / 25}
$$

$$
=\frac{24 / 5}{-119 / 25}
$$

$$
=-\frac{24}{5} \cdot \frac{25}{119} \Rightarrow \tan 2 \alpha=\frac{120}{119}
$$

(iii) Let $\theta=54^{\circ}$
$\Rightarrow \quad 5 \theta=270^{\circ}$
$\Rightarrow \quad 3 \theta+2 \theta=270^{\circ}$
$\Rightarrow \quad 2 \theta=270^{\circ}-3 \theta$
$\because \cos 3 \theta=4 \cos ^{3} \theta-3 \cos t$

$$
\sin 2 \theta=\sin (270-3 \theta)
$$

$\therefore \sin 2 \theta=2 \sin \theta \cos \theta$
$\Rightarrow \sin 2 \theta=\sin (3(90)-3 \theta)$
$\Rightarrow \sin 2 \theta=-\cos 3 \theta$
$\Rightarrow 2 \sin \theta \cos \theta=-\left(4 \cos ^{3} \theta-3 \cos \theta\right)$
$\left.\Rightarrow 2 \sin \theta \cos \theta=-4 \cos ^{3} \theta+3 \cos \theta\right)$
$\Rightarrow 2 \sin \theta=-4 \cos ^{2} \theta+3$
$\Rightarrow 2 \sin \theta=-4\left(1-\sin ^{2} \theta\right)+3$
$\Rightarrow 2 \sin \theta=-4+4 \sin ^{2} \theta+3$
$\Rightarrow 2 \sin \theta=4 \sin ^{2} \theta-1$
$\Rightarrow 4 \sin ^{2} \theta-2 \sin \theta-1=0$

$$
\sin \theta=\frac{1+\sqrt{5}}{4}
$$

$$
\Rightarrow \sin 54^{\circ}=\frac{1+\sqrt{5}}{4}
$$

Now $\cos ^{2} 54^{\circ}=1-\sin ^{2} 54^{\circ}$

$$
\begin{aligned}
\Rightarrow \cos ^{2} 54^{\circ} & =1-\left(\frac{1+\sqrt{5}}{4}\right)^{2} \\
\cos ^{2} 54^{\circ} & =1-\frac{(\sqrt{5})^{2}+2 \sqrt{5}+1}{16}
\end{aligned}
$$

$$
=1-\frac{5+2 \sqrt{5}+1}{16}
$$

$$
=1-\frac{6+2 \sqrt{5}}{16}
$$

$$
=\frac{16-6-\sqrt{5}}{16}
$$

$$
=\frac{10-2 \sqrt{5}}{16}
$$

$$
\Rightarrow \cos 54^{\circ}=\sqrt{\frac{10-2 \sqrt{5}}{16}} \Rightarrow
$$

$$
\cos 54^{\circ}=\frac{\sqrt{10-2 \sqrt{5}}}{4}
$$

(iii) Now $\sin (90-36)=\cos 36^{\circ} \quad$ Method $\quad \because \sin (90-\theta)=\cos \theta$

$$
\Rightarrow \sin 54^{\circ}=\cos 36^{\circ}
$$

And $\Rightarrow \sin 54^{\circ}=\frac{1+\sqrt{5}}{4}$
$\cos (90-36)=\sin 36^{\circ}$
$\Rightarrow \cos 54^{\circ}=\sin 36^{\circ}$
$\Rightarrow \cos 54^{\circ}=\frac{\sqrt{10-2 \sqrt{5}}}{4}$
(iv) Now $\sin (90-18)=\cos 18^{\circ}$ $\because \sin (90-\theta)=\cos \theta$

$$
\begin{aligned}
& \Rightarrow \sin 72^{\circ}=\cos 18^{\circ} \\
& \Rightarrow \sin 72^{\circ}=\frac{\sqrt{10+2 \sqrt{5}}}{4}
\end{aligned}
$$

and

$$
\cos (90-18)=\sin 18^{\circ}
$$

$$
\Rightarrow \cos 72^{\circ}=\sin 18^{\circ}
$$

$$
\Rightarrow \cos 72^{\circ}=\frac{\sqrt{5}-1}{4}
$$

(ii) $\quad \cos \alpha=\frac{3}{5} \quad ; \quad 0<\alpha<\frac{\pi}{2}$

Hint: First find $\sin \alpha$ and $\tan \alpha$ then solve as above

Question \# $2 \cot \alpha-\tan \alpha=2 \cot 2 \alpha$

Solution

L.H.S $=\cot \alpha-\tan \alpha$

$$
\begin{aligned}
& =\frac{\cos \alpha}{\sin \alpha}-\frac{\sin \alpha}{\cos \alpha} \\
& =\frac{\cos ^{2} \alpha-\sin ^{2} \alpha}{\sin \alpha \cos \alpha} \\
& =\frac{2\left(\cos ^{2} \alpha-\sin ^{2} \alpha\right)}{2 \sin \alpha \cos \alpha} \\
& =\frac{2 \cos 2 \alpha}{\sin 2 \alpha} \\
& =2 \cot 2 \alpha=\text { R.H.S }
\end{aligned}
$$

Question \# $3 \frac{\sin 2 \alpha}{1+\cos 2 \alpha}=\tan \alpha$

Solution

$\overline{\mathrm{L} . \mathrm{H} . S}=\frac{\sin 2 \alpha}{1+\cos 2 \alpha}$

$$
\begin{array}{r|r}
& 1+\cos 2 \alpha \\
= & \frac{2 \sin \alpha \cos \alpha}{2 \cos ^{2} \alpha} \\
= & \frac{\sin \alpha}{\cos \alpha} \\
=\tan \alpha=\text { R.H.S } & \therefore 2 \cos ^{2} \alpha=\frac{1+\cos 2 \alpha}{2} \\
\end{array}
$$

Question \# 4 $\frac{1-\cos \alpha}{\sin \alpha}=\tan \frac{\alpha}{2}$

Solution

$$
\text { L.H.S }=\frac{1-\cos \alpha}{\sin \alpha}
$$

$$
=\frac{2 \sin ^{2} \frac{\alpha}{2}}{2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}}
$$

$$
=\frac{\sin \frac{\alpha}{2}}{\cos \frac{\alpha}{2}}
$$

$$
=\tan \frac{\alpha}{2}=\text { R.H.S }
$$

Question \# $5 \frac{\cos \alpha-\sin \alpha}{\cos \alpha+\sin \alpha}=\sec 2 \alpha-\tan 2 \alpha$

Solution

$$
\begin{aligned}
\text { L.H.S } & =\frac{\cos \alpha-\sin \alpha}{\cos \alpha+\sin \alpha} \\
& =\frac{\cos \alpha-\sin \alpha}{\cos \alpha+\sin \alpha} \times \frac{\cos \alpha-\sin \alpha}{\cos \alpha-\sin \alpha} \\
& =\frac{(\cos \alpha-\sin \alpha)^{2}}{\cos ^{2} \alpha-\sin ^{2} \alpha} \\
& =\frac{\cos ^{2} \alpha-\sin ^{2} \alpha-2 \sin \alpha \cos \alpha}{\cos 2 \alpha} \\
& =\frac{1-\sin 2 \alpha}{\cos 2 \alpha} \\
& =\frac{1}{\cos 2 \alpha}-\frac{\sin 2 \alpha}{\cos 2 \alpha} \\
& =\sec 2 \alpha-\tan 2 \alpha=\text { R.H.S }
\end{aligned}
$$

$\frac{\text { Question \# 6 }}{\text { Solution }} \sqrt{\frac{1+\sin \alpha}{1-\sin \alpha}}=\frac{\sin \frac{\alpha}{2}+\cos \frac{\alpha}{2}}{\sin \frac{\alpha}{2}-\cos \frac{\alpha}{2}}$

Solution

$\frac{\text { L.H.S }=}{\frac{1+\sin \alpha}{1-\sin \alpha}}$

$$
=\sqrt{\frac{\sin ^{2} \frac{\alpha}{2}+\cos ^{2} \frac{\alpha}{2}+2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}}{\sin ^{2} \frac{\alpha}{2}+\cos ^{2} \frac{\alpha}{2}-2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}}}
$$

$$
=\sqrt{\frac{\left(\sin \frac{\alpha}{2}+\cos \frac{\alpha}{2}\right)^{2}}{\left(\sin \frac{\alpha}{2}-\cos \frac{\alpha}{2}\right)^{2}}}
$$

$$
\begin{aligned}
\because & \sin ^{2} \frac{\alpha}{2}+\cos ^{2} \frac{\alpha}{2}=1 \\
& \sin \alpha=2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}
\end{aligned}
$$

$$
=\frac{\sin \frac{\alpha}{2}+\cos \frac{\alpha}{2}}{\sin \frac{\alpha}{2}-\cos \frac{\alpha}{2}}=\text { R.H.S }
$$

Question \# $7 \frac{\operatorname{cosec} \theta+2 \operatorname{cosec} 2 \theta}{\sec \theta}=\cot \frac{\theta}{2}$

Solution

L.H.S $=\frac{\operatorname{cosec} \theta+2 \operatorname{cosec} 2 \theta}{\sec \theta}$

$$
=\frac{\frac{1}{\sin \theta}+\frac{2}{\sin 2 \theta}}{\frac{1}{\cos \theta}}
$$

$$
=\cos \theta\left(\frac{1}{\sin \theta}+\frac{2}{2 \sin \theta \cos \theta}\right)
$$

$$
=\cos \theta\left(\frac{1}{\sin \theta}+\frac{1}{\sin \theta \cos \theta}\right)
$$

$$
=\cos \theta\left(\frac{\cos \theta+1}{\sin \theta \cos \theta}\right)
$$

$$
=\frac{\cos \theta+1}{\sin \theta}
$$

$$
=\frac{2 \cos ^{2} \frac{\theta}{2}}{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}
$$

$$
=\cot \frac{\theta}{2}=\text { R.H.S }
$$

Question \# $8 \quad 1+\tan \alpha \tan 2 \alpha=\sec 2 \alpha$

Solution

L.H.S $=1+\tan \alpha \tan 2 \alpha$

$$
\begin{aligned}
& =1+\left(\frac{\sin \alpha}{\cos \alpha}\right)\left(\frac{\sin 2 \alpha}{\cos 2 \alpha}\right) \\
& =\frac{\cos \alpha \cos 2 \alpha+\sin \alpha \sin 2 \alpha}{\cos \alpha \cos 2 \alpha} \\
& =\frac{\cos (2 \alpha-\alpha)}{\cos \alpha \cos 2 \alpha} \\
& =\frac{\cos \alpha}{\cos \alpha \cos 2 \alpha} \\
& =\frac{1}{\cos 2 \alpha} \\
& =\sec 2 \alpha=\text { R.H.S }
\end{aligned}
$$

$\frac{\text { Question \# 9 }}{\text { Solution }} \frac{2 \sin \theta \sin 2 \theta}{\cos \theta+\cos 3 \theta}=\tan 2 \theta \tan \theta$
L.H.S $=\frac{2 \sin \theta \sin 2 \theta}{\cos \theta+\cos 3 \theta}$

$$
\begin{aligned}
& =\frac{2 \sin \theta \sin 2 \theta}{\cos \theta+4 \cos ^{3} \theta-3 \cos \theta} \\
& =\frac{2 \sin \theta \sin 2 \theta}{4 \cos ^{3} \theta-2 \cos \theta} \\
& =\frac{2 \sin \theta \sin 2 \theta}{2 \cos \theta\left(2 \cos ^{2} \theta-1\right)} \\
& =\frac{\sin \theta \sin 2 \theta}{\cos \theta \cos 2 \theta} \\
& =\tan \theta \tan 2 \theta \\
& =\tan 2 \theta \tan \theta=\text { R.H.S }
\end{aligned}
$$

Question \# $10 \frac{\sin 3 \theta}{\sin \theta}-\frac{\cos 3 \theta}{\cos \theta}=2$

Solution

$$
\begin{aligned}
\text { L.H.S } & =\frac{\sin 3 \theta}{\sin \theta}-\frac{\cos 3 \theta}{\cos \theta} \\
& =\frac{\sin 3 \theta \cos \theta-\cos 3 \theta \sin \theta}{\sin \theta \cos \theta} \\
& =\frac{\sin (3 \theta-\theta)}{\sin \theta \cos \theta} \\
& =\frac{\sin 2 \theta}{\sin \theta \cos \theta} \\
& =\frac{2 \sin \theta \cos \theta}{\sin \theta \cos \theta} \\
& =2=\text { R.H.S }
\end{aligned}
$$

Question \# $11 \frac{\cos 3 \theta}{\cos \theta}+\frac{\sin 3 \theta}{\sin \theta}=4 \cos 2 \theta$

Solution

$$
\begin{aligned}
\text { L.H.S } & =\frac{\cos 3 \theta}{\cos \theta}+\frac{\sin 3 \theta}{\sin \theta} \\
& =\frac{\cos 3 \theta \sin \theta+\sin 3 \theta \cos \theta}{\sin \theta \cos \theta} \\
& =\frac{\sin (\theta+3 \theta)}{\sin \theta \cos \theta} \\
& =\frac{\sin 4 \theta}{\sin \theta \cos \theta} \\
& =\frac{2 \sin 2 \theta \cos 2 \theta}{\sin \theta \cos \theta} \\
& =\frac{2(2 \sin \theta \cos \theta) \cos 2 \theta}{\sin \theta \cos \theta} \\
& =4 \cos 2 \theta=\text { R.H.S }
\end{aligned}
$$

Question \# $12 \frac{\tan \frac{\theta}{2}+\cot \frac{\theta}{2}}{\cot \frac{\theta}{2}-\tan \frac{\theta}{2}}=\sec \theta$

Solution

L.H.S $=\frac{\tan \frac{\theta}{2}+\cot \frac{\theta}{2}}{\cot \frac{\theta}{2}-\tan \frac{\theta}{2}}$
$=\frac{\frac{\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}}+\frac{\cos \frac{\theta}{2}}{\sin \frac{\theta}{2}}}{\frac{\cos \frac{\theta}{2}}{\sin \frac{\theta}{2}}-\frac{\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}}}$

$$
=\frac{\frac{\sin ^{2} \frac{\theta}{2}+\cos ^{2} \frac{\theta}{2}}{\sin \frac{\theta}{2} \cos \frac{\theta}{2}}}{\frac{\cos ^{2} \frac{\theta}{2}-\sin ^{2} \frac{\theta}{2}}{\sin \frac{\theta}{2} \cos \frac{\theta}{2}}}
$$

$$
=\frac{\sin ^{2} \frac{\theta}{2}+\cos ^{2} \frac{\theta}{2}}{\cos ^{2} \frac{\theta}{2}-\sin ^{2} \frac{\theta}{2}}
$$

$$
=\frac{1}{\cos \theta}
$$

$$
=\sec \theta=\text { R.H.S }
$$

Question \# $13 \frac{\sin 3 \theta}{\cos \theta}+\frac{\cos 3 \theta}{\sin \theta}=2 \cot 2 \theta$

Solution

$$
\begin{aligned}
\text { L.H.S } & =\frac{\sin 3 \theta}{\cos \theta}+\frac{\cos 3 \theta}{\sin \theta} \\
& =\frac{\sin 3 \theta \sin \theta+\cos 3 \theta \cos \theta}{\sin \theta \cos \theta} \\
& =\frac{\cos (3 \theta-\theta)}{\sin \theta \cos \theta} \\
& =\frac{\cos 2 \theta}{\sin \theta \cos \theta} \\
& =\frac{2 \cos 2 \theta}{2 \sin \theta \cos \theta} \\
& =\frac{2 \cos 2 \theta}{\sin 2 \theta} \\
& =2 \cot 2 \theta=\text { R.H.S }
\end{aligned}
$$

Question \# 14 Reduce $\sin ^{4} \theta$ to an expression involving only functions of multiples of θ raised to the first power.

Solution

$$
\begin{aligned}
\sin ^{4} \theta & =\left(\sin ^{2} \theta\right)^{2} \\
& =\left(\frac{1-\cos 2 \theta}{2}\right)^{2} \\
& =\frac{1-2 \cos 2 \theta+\cos ^{2} 2 \theta}{4} \\
& =\frac{1}{4}\left(1-2 \cos 2 \theta+\cos ^{2} 2 \theta\right) \\
& =\frac{1}{4}\left(1-2 \cos 2 \theta+\frac{1+\cos 4 \theta}{2}\right) \\
& =\frac{1}{4}\left(\frac{2-4 \cos 2 \theta+1+\cos 4 \theta}{2}\right) \\
& =\frac{1}{8}(3-4 \cos 2 \theta+\cos 4 \theta)
\end{aligned}
$$

Question \# 15 Find the values of $\sin \theta$ and $\cos \theta$, without using table or calculator, when θ
(i) 18°
(ii) 36°
(iii) 54°
(iv) 72°

Solution

(i) Let $\theta=18^{\circ}$
$\Rightarrow \quad 5 \theta=90^{\circ}$
$\Rightarrow \quad 3 \theta+2 \theta=90^{\circ}$
$\Rightarrow \quad 2 \theta=90^{\circ}-3 \theta$

$$
\sin 2 \theta=\sin (90-3 \theta)
$$

$\Rightarrow \sin 2 \theta=\cos 3 \theta$
$\Rightarrow 2 \sin \theta \cos \theta=4 \cos ^{3} \theta-3 \cos \theta$
$\Rightarrow 2 \sin \theta=4 \cos ^{2} \theta-3$
$\Rightarrow 2 \sin \theta=4\left(1-\sin ^{2} \theta\right)-3$
$\Rightarrow 2 \sin \theta=4-4 \sin ^{2} \theta-3$
$\Rightarrow 2 \sin \theta=1-4 \sin ^{2} \theta$
$\Rightarrow 4 \sin ^{2} \theta+2 \sin \theta-1=0$
$\sin \theta:=\frac{-2 \pm \sqrt{(2)^{2}-4(4)(-1)}}{2(4)}$
$=\frac{-2 \pm \sqrt{4+16}}{8}$
$=\frac{-2 \pm \sqrt{20}}{8}$
$=\frac{-2 \pm 2 \sqrt{5}}{8}$

$$
=\frac{-1 \pm \sqrt{5}}{8}
$$

$$
\sin \theta=\frac{-1+\sqrt{5}}{4}
$$

$$
\Rightarrow \sin 18^{\circ}=\frac{\sqrt{5}-1}{4}
$$

Now $\cos ^{2} 18^{\circ}=1-\sin ^{2} 18^{\circ}$

$$
\begin{aligned}
\Rightarrow \cos ^{2} 18^{\circ} & =1-\left(\frac{\sqrt{5}-1}{4}\right)^{2} \\
\Rightarrow \cos ^{2} 18^{\circ} & =1-\frac{(\sqrt{5})^{2}-2 \sqrt{5}+1}{16} \\
& =1-\frac{5-2 \sqrt{5}+1}{16} \\
& =1-\frac{6-2 \sqrt{5}}{16} \\
& =\frac{16-6+\sqrt{5}}{16} \\
& =\frac{10+2 \sqrt{5}}{16} \\
\Rightarrow \cos 18^{\circ} & =\sqrt{\frac{10+2 \sqrt{5}}{16}} \Rightarrow \cos 18^{\circ}=\frac{\sqrt{10+2 \sqrt{5}}}{4}
\end{aligned}
$$

(ii) Since $\cos ^{2} \theta=\frac{1+\cos 2 \theta}{2}$

$$
\begin{aligned}
2 \cos ^{2} \theta & =1+\cos 2 \theta \\
\Rightarrow \cos 2 \theta & =2 \cos ^{2} \theta-1 \\
\Rightarrow \cos 2(18)= & 2 \cos ^{2}(18)-1 \\
\Rightarrow \cos 36 & =2\left(\frac{\sqrt{10+2 \sqrt{5}}}{4}\right)^{2}-1 \\
= & 2\left(\frac{10+2 \sqrt{5}}{16}\right)-1 \\
= & \frac{10+2 \sqrt{5}}{8}-1 \\
= & \frac{10+2 \sqrt{5}-8}{8} \\
= & \frac{2+2 \sqrt{5}}{8} \\
\Rightarrow \cos 36^{\circ} & =\frac{1+\sqrt{5}}{4}
\end{aligned}
$$

$$
\sin ^{2} 36=1-\cos ^{2} 36
$$

$$
=1-\left(\frac{1+\sqrt{5}}{2}\right)^{2}
$$

$$
=1-\frac{1+2 \sqrt{5}+(\sqrt{5})^{2}}{16}
$$

$$
=1-\frac{1+2 \sqrt{5}+5}{16}
$$

$$
=1-\frac{6+2 \sqrt{5}}{16}
$$

$$
=\frac{16-6-2 \sqrt{5}}{16}
$$

$$
=\frac{10-2 \sqrt{5}}{16}
$$

$\Rightarrow \sin 36^{\circ}=\sqrt{\frac{10-2 \sqrt{5}}{16}}$
$\sin 36^{\circ}=\frac{\sqrt{10-2 \sqrt{5}}}{4}$

