Trigonometric Identities

Exercise 10.1 (Solution) for Class XI

Question \# 1 Without using the tables, find the value of :
(i) $\sin \left(-780^{\circ}\right)$
(iv) $\sec (-960)$
(ii) $\cot \left(-855^{\circ}\right)$
(iii) $\csc \left(2040^{\circ}\right)$
(v) $\tan \left(1110^{\circ}\right)$
(vi) $\sin \left(-300^{\circ}\right)$

Solution

(i) $\sin \left(-780^{\circ}\right)$
$=-\sin 780^{\circ}$
$=-\sin (8(90)+60)$
$=-\sin (60)=-\frac{\sqrt{3}}{2}$
$\because 780$ is in the Ist quad.
(ii) $\cot \left(-855^{\circ}\right)$
$=-\cot 855^{\circ}$
$=-\cot (9(90)+45)$
$=-\left(-\tan 45^{\circ}\right) \quad \because 855$ is in the IInd quad.
$=\tan 45^{\circ}=1$
(iii) $\csc \left(2040^{\circ}\right)$
$=\csc (22(90)+60)$
$=-\csc (60) \quad \because 2040^{\circ}$ is in the Ist quad.
$=-\frac{1}{\sin (60)}$
$=-\frac{1}{\sqrt{3} / 2}=-\frac{2}{\sqrt{3}}$
(iv) $\sec (-960)$
$=\sec (960)$
$=\sec (10(90)+60)$
$=-\sec 60^{\circ} \quad \because 960^{\circ}$ is in the IIIrd quad.
$=-\frac{1}{\cos 60^{\circ}}$
$=-\frac{1}{1 / 2}=-2$
(v) $\tan (1110)$
$\begin{array}{ll}=\tan (12(90)+30) \\ = & \tan (30)=\frac{1}{\sqrt{3}}\end{array}$
(yi) $\sin (-300)$
$=-\sin (300)$
$=-\sin (3(90)+30)$
$=-\left(-\cos 30^{\circ}\right)$
$\because 300^{\circ}$ is in the IIIrd quad.
$=\cos 30^{\circ}=\frac{\sqrt{3}}{2}$

Question \# 2

Express each of the following as a trigonometric function of an angle of positive degree measure of less than 45°.
(i) $\sin 196^{\circ}$
(ii) $\cos 147^{\circ}$
(iii) $\sin 319^{\circ}$
(iv) $\cos 254^{\circ}$
(v) $\tan 294^{\circ}$
(vi) $\cos 728^{\circ}$
(vii) $\sin \left(-625^{\circ}\right)$
(viii) $\cos \left(-435^{\circ}\right)$

Solution

(i) $\sin 196^{\circ}$
$=\sin (180+16)$
$=\sin 180^{\circ} \cos 16^{\circ}+\cos 180^{\circ} \sin 16^{\circ}$
$=(0) \cos 16^{\circ}+(-1) \sin 16^{\circ}$
$=-\sin 16^{\circ}$
(ii) $\cos 147^{\circ}$

$$
=\cos (180-33)
$$

$=\cos 180^{\circ} \cos 33^{\circ}+\sin 180^{\circ} \sin 33^{\circ}$
$=(-1) \cos 33^{\circ}+(0) \sin 33^{\circ}$
$=-\cos 33^{\circ}$
(iii) $\sin 319$
$=\sin (360-41)$
$=\sin 360^{\circ} \cos 41^{\circ}-\cos 360^{\circ} \sin 41^{\circ}$
$=$
(iv) $\cos 254^{\circ}$
$=\cos (270-16)$
(v) $\tan 294^{\circ}$
$=\frac{\sin 294^{\circ}}{\cos 294^{\circ}}$
$=\frac{\sin (270+24)}{\cos (270+24)}$
$=\frac{\sin 270^{\circ} \cos 24^{\circ}+\cos 270^{\circ} \sin 24^{\circ}}{\cos 270^{\circ} \cos 24^{\circ}-\sin 270^{\circ} \sin 24^{\circ}}$
$=\frac{(-1) \cos 24^{\circ}+(0) \sin 24^{\circ}}{(0) \cos 24^{\circ}-(-1) \sin 24^{\circ}}$
$=\frac{-\cos 24^{\circ}+0}{0+\sin 24^{\circ}}$
$=\frac{-\cos 24^{\circ}}{\sin 24^{\circ}}$
$=-\cot 24^{\circ}$
and Method:

$$
\begin{aligned}
& \tan 294^{\circ} \\
= & \tan (270+24) \\
= & \frac{\tan 270^{\circ}+\tan 24^{\circ}}{1-\tan 270^{\circ} \tan 24^{\circ}} \\
= & \frac{\tan 270^{\circ}\left(1+\frac{\tan 24^{\circ}}{\tan 270^{\circ}}\right)}{\tan 270^{\circ}\left(\frac{1}{\tan 270^{\circ}}-\tan 24^{\circ}\right)}
\end{aligned}
$$

$$
=\frac{\left(1+\frac{\tan 24^{\circ}}{\infty}\right)}{\left(\frac{1}{\infty}-\tan 24^{\circ}\right)}
$$

$$
=\frac{(1+0)}{\left(0-\tan 24^{\circ}\right)}
$$

$$
=-\frac{1}{\tan 24^{\circ}}=-\cot 24^{\circ}
$$

(vi) $\cos 728^{\circ}$

$$
=\cos (720+8)
$$

(vii) $\sin \left(-625^{\circ}\right)$

$$
\begin{aligned}
& =-\sin 625^{\circ} \\
& =-\sin (630-5) \\
& =-\left(\sin 630^{\circ} \cos 5^{\circ}-\cos 630^{\circ} \sin 5^{\circ}\right) \\
& =-\left((-1) \cos 5^{\circ}-(0) \sin 5^{\circ}\right) \\
& =-\left(-\cos 5^{\circ}-0\right)=\cos 5^{\circ}
\end{aligned}
$$

(viii) $\cos \left(-435^{\circ}\right)$

$$
\begin{aligned}
& =\cos 435^{\circ} \\
& =\cos (450-15)
\end{aligned}
$$

Question \# 3 Prove the following:

(i) $\sin (180+\alpha) \sin (90-\alpha)=-\sin \alpha \cos \alpha \quad$ (iii) $\sin 306^{\circ}+\cos 234^{\circ}+\cos 162^{\circ}+\cos 18^{\circ}=0$
(ii) $\sin 780^{\circ} \sin 480^{\circ}+\cos 120^{\circ} \sin 30^{\circ}=\frac{1}{2}$
(iv) $\cos 330^{\circ} \sin 600^{\circ}+\cos 120^{\circ} \sin 150^{\circ}=-1$

Solution

(i) L.H.S
$=\sin (180+\alpha) \sin (90-\alpha)$
$\left.=\left(\sin 180^{\circ} \cos \alpha+\cos 180^{\circ} \sin \alpha\right)\right)\left(\sin 90^{\circ} \cos \alpha-\cos 90^{\circ} \sin \alpha\right)$
$=((0) \cos \alpha+(-1) \sin \alpha))((1) \cos \alpha-(0) \sin \alpha)$
$=(0-\sin \alpha))(\cos \alpha-0)$
$=-\sin \alpha \cos \alpha=$ R.H.S
(ii) L.H.S
$=\sin 780^{\circ} \sin 480^{\circ}+\cos 120^{\circ} \sin 30^{\circ}$
$=\sin (720+60) \sin (450+30)+\cos (90+30) \sin 30^{\circ}$
$=\sin (2 \times 360+60) \sin (5 \times 90+30)+\cos (90+30) \sin 30^{\circ}$
$=\sin 60^{\circ} \cos 30+(-\sin 30) \sin 30^{\circ}$
$=\left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{3}}{2}\right)+\left(-\frac{1}{2}\right)\left(\frac{1}{2}\right)$
$=\frac{3}{4}-\frac{1}{4}=\frac{1}{2}=$ R.H.S
(iii) L.H.S
$=\sin 306^{\circ}+\cos 234^{\circ}+\cos 162^{\circ}+\cos 18^{\circ}$
$=\cos (270+36)+\cos (270-36)+\cos (180-18)+\cos 18^{\circ}$
$=\cos 270^{\circ} \cos 36^{\circ}-\sin 270^{\circ} \sin 36^{\circ}+\cos 270 \cos 36+\sin 270 \cos 36$
$+\cos 180^{\circ} \cos 18^{\circ}+\sin 180^{\circ} \sin 18^{\circ}+\cos 18^{\circ}$
$=(0) \cos 36^{\circ}-(-1) \sin 36^{\circ}+(0) \cos 36^{\circ}+(-1) \sin 36^{\circ}$
$+(-1) \cos 18+(0) \sin 18+\cos 18^{\circ}$
$=\sin 36^{\circ}-\sin 36^{\circ}-\cos 18^{\circ}+\cos 18^{\circ}$
$=0=$ R.H.S
(iv) L.H.S
$=\cos 330^{\circ} \sin 600^{\circ}+\cos 120^{\circ} \sin 150^{\circ}$
$=\cos (360-30) \sin (6 \times 90+60)+\cos (90+30) \sin (90+60)$
$=\left(\cos \left(-30^{\circ}\right)\right)(-\sin 60)+(-\sin 30)\left(\cos 60^{\circ}\right)$
$=\left(\cos 30^{\circ}\right)(-\sin 60)+(-\sin 30)\left(\cos 60^{\circ}\right)$
$=\left(\frac{\sqrt{3}}{2}\right)\left(-\frac{\sqrt{3}}{2}\right)+\left(-\frac{1}{2}\right)\left(\frac{1}{2}\right)$
$\because 600^{\circ}$ is in the IIIrd quad
$\because 120^{\circ}$ is in the IInd quad
$=-\frac{3}{4}-\frac{1}{4} \quad \because 150^{\circ}$ is in the Ind quad
$=-\frac{4}{4}=-1=$ R.H.S

Question \# 4 Prove that
(i) $\frac{\sin ^{2}(\pi+\theta) \tan \left(\frac{3 \pi}{2}+\theta\right)}{\cot ^{2}\left(\frac{3 \pi}{2}-\theta\right) \cos ^{2}(\pi-\theta) \operatorname{cosec}(2 \pi-\theta)}=\cos \theta$

Solution

(i) L.H.S

$$
=\frac{\sin ^{2}(\pi+\theta) \tan \left(\frac{3 \pi}{2}+\theta\right)}{\cot ^{2}\left(\frac{3 \pi}{2}-\theta\right) \cos ^{2}(\pi-\theta) \operatorname{cosec}(2 \pi-\theta)}
$$

First we calculate

$$
\begin{aligned}
& \sin (\pi+\theta)=\sin \pi \cos \theta+\cos \pi \sin \theta \\
& =(0) \cos \theta+(-1) \sin \theta \\
& =0-\sin \theta=-\sin \theta \\
& \Rightarrow \sin ^{2}(\pi+\theta)=(-\sin \theta)^{2} \\
& \tan \left(\frac{3 \pi}{2}+\theta\right)=\tan \left(3 \cdot \frac{\pi}{2}+\theta\right)=-\cot \theta \because \frac{3 \pi}{2}+\theta \text { is in the IVth quad } \\
& \cot \left(\frac{3 \pi}{2}-\theta\right)=\cot \left(3 \cdot \frac{\pi}{2}-\theta\right)=\tan \theta \quad \because \frac{3 \pi}{2}-\theta \text { is in the IIIrd quad } \\
& \Rightarrow \cot ^{2}\left(\frac{3 \pi}{2}-\theta\right)=(\tan \theta)^{2} \\
& \csc (2 \pi-\theta)=\csc (-\theta)=-\csc \theta \\
& \cos (\pi-\theta)=\cos \pi \cos \theta+\sin \pi \sin \theta \\
& =(-1) \cos \theta+(0) \sin \theta \\
& =-\cos \theta+0=-\cos \theta \\
& \Rightarrow \cos ^{2}(\pi-\theta)=(-\cos \theta)^{2} \\
& =\frac{(-\sin \theta)^{2}(-\cot \theta)}{(\tan \theta)^{2}(-\cos \theta)^{2}(-\csc \theta)} \\
& =\frac{\sin ^{2} \theta(-\cot \theta)}{\tan ^{2} \theta \cos ^{2} \theta(-\csc \theta)} \\
& =\frac{\sin ^{2} \theta \frac{\cos \theta}{\sin \theta}}{\frac{\sin ^{2} \theta}{\cos ^{2} \theta} \cos ^{2} \theta \frac{1}{\sin \theta}} \\
& =\frac{\sin \theta \cos \theta}{\sin \theta} \\
& =\cos \theta=\text { R.H.S }
\end{aligned}
$$

Question \# 4 Prove that
(ii) $\frac{\cos \left(90^{\circ}+\theta\right) \sec (-\theta) \tan \left(180^{\circ}-\theta\right)}{\sec \left(360^{\circ}-\theta\right) \sin \left(180^{\circ}+\theta\right) \cot \left(90^{\circ}-\theta\right)}=-1$

Solution

(ii) L.H.S

$$
=\frac{\cos \left(90^{\circ}+\theta\right) \sec (-\theta) \tan \left(180^{\circ}-\theta\right)}{\sec \left(360^{\circ}-\theta\right) \sin \left(180^{\circ}+\theta\right) \cot \left(90^{\circ}-\theta\right)}
$$

First we calculate

$$
\begin{aligned}
& \cos (90+\theta)=-\sin \theta \\
& \because 90+\theta \text { is in the Ind quad. } \\
& \sec (-\theta)=\sec \theta \\
& \tan (180-\theta)=\tan (2(90)-\theta)=-\tan \theta \\
& \because 180-\theta \text { is in the Ind quad. } \\
& \sec (360-\theta)=\sec (-\theta)=\sec \theta \\
& \sin (180+\theta)=\sin (2(90)+\theta)=-\sin \theta \\
& \because 180+\theta \text { is in the IIIrd quad. } \\
& \cot (90-\theta)=\tan \theta \\
& \because 90-\theta \text { is in the Ist quad. }
\end{aligned}
$$

$$
=\frac{(-\sin \theta) \sec \theta(-\tan \theta)}{\sec \theta(-\sin \theta)(-\tan \theta)}
$$

$$
=1
$$

$=$ R.H.S

Question \# 5 If α, β, γ are the angles of a triangle $A B C$, then prove that
(i) $\sin (\alpha+\beta)=\sin \gamma$
(ii) $\cos \left(\frac{\alpha+\beta}{2}\right)=\sin \frac{\gamma}{2}$
(iii) $\cos (\alpha+\beta)=\cos \gamma$
(iv) $\tan (\alpha+\beta)+\tan \gamma=0$

Solution

(i) L.H.S $=\sin (\alpha+\beta)$

$$
\begin{aligned}
& =\sin (180-\gamma) \\
& =\sin 180 \cos \gamma-\cos 180 \sin \gamma \\
& =(0) \cos \gamma-(-1) \sin \gamma \\
& =0+\sin \gamma \\
& =\sin \gamma=\text { R.H.S }
\end{aligned}
$$

Since α, β and γ are angels of triangle therefore

$$
\begin{aligned}
& \alpha+\beta+\gamma=180 \\
\Rightarrow & \alpha+\beta=180-\gamma
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\text { L.H.S } & =\cos \left(\frac{\alpha+\beta}{2}\right) \\
& =\cos \left(\frac{180-\gamma}{2}\right) \\
& =\cos \left(\frac{180}{2}-\frac{\gamma}{2}\right) \\
& =\cos \left(90-\frac{\gamma}{2}\right) \\
& =\cos 90 \cos \frac{\gamma}{2}+\sin 90 \sin \frac{\gamma}{2} \\
& =(0) \cos \frac{\gamma}{2}+(1) \sin \frac{\gamma}{2} \\
& =0+\sin \frac{\gamma}{2} \\
& =\sin \frac{\gamma}{2}=\text { R.H.S }
\end{aligned}
$$

Since α, β and γ are angels of triangle therefore

$$
\Rightarrow \begin{gathered}
\alpha+\beta+\gamma=180 \\
\alpha+\beta=180-\gamma
\end{gathered} \Rightarrow \frac{\alpha+\beta}{2}=\frac{180-\gamma}{2}
$$

Since α, β and γ are angels of triangle therefore $\alpha+\beta+\gamma=180 \Rightarrow \alpha+\beta=180-\gamma$
(iii) L.H.S $=\cos (\alpha+\beta)$

$$
\begin{aligned}
& =\cos (180-\gamma) \\
& =\cos 180 \cos \gamma+\sin 180 \sin \gamma \\
& =(-1) \cos \gamma+(0) \sin \gamma \\
& =-\cos \gamma+0 \\
& =-\cos \gamma=\text { R.H.S }
\end{aligned}
$$

(iv) L.H.S $=\tan (\alpha+\beta)+\tan \gamma$

$$
\begin{aligned}
& =\tan (180-\gamma)+\tan \gamma \\
& =\frac{\tan 180-\tan \gamma}{1+\tan 180 \tan \gamma}+\tan \gamma \\
& =\frac{(0)-\tan \gamma}{1+(0) \tan \gamma}+\tan \gamma \\
& =\frac{-\tan \gamma}{1+0}+\tan \gamma \\
& =-\tan \gamma+\tan \gamma \\
& =0=\text { R.H.S }
\end{aligned}
$$

Since α, β and γ are angels of triangle therefore $\alpha+\beta+\gamma=180 \Rightarrow \alpha+\beta=180-\gamma$

