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SECTION 19 MEASURABLE FUNCTIONS 63

every open set in C is a countable union of open rectangles, then f~1(G) € A for
any open set G C C, so that f is .A-measurable.

19L Let A := {f~(H) : H € C}. Clearly @ = f~1(0) € A; also X =
F7(Y) € A. If E € A, then E = f~1(H) for some H € C whence X — E =
YY) - fYE) = f~Y(Y — H) so that X — E € C. Finally, if E, € A for all
n € N, there exist H,, € C such that E, = f~1(H,) and by (19.{) we conclude that
Unz1 En=Upz; 7Y (Ha) = F~1(U;2; Hy), so the union of the E, is in A. Thus
A is a o-algebra.

19.M Since A is a o-algebra and f~1(0) = @ € A then @ € C. Similarly,
F7Y(Y) = X € A implies that Y € C. If H € C, then f~1(H) € A, so that
7YY - H) = X - f~(H) € A, which implies that Y — H € C. If H,, € C for
n €N, then f~1(U2, H,) =Use, f~1(H,) € A, which implies that |J3> , H, € C.
Thus C is a o-algebra.

19.N If C denotes the collection in Exercise 19.M, it was shown there that C
is a o-algebra containing the collection C;. Therefore if Cy is the smallest o-algebra
containing C;, it follows that C; C Cp C C. Thus, if K € Cy, then we have K € C so
that (by its definition), we have f~}(K) € A.

19.0 (a) The identity map = — z is strictly increasing and continuous and
A is increasing and continuous, so V¥ is strictly increasing (and hence one-one) and
continuous. Also ¥(0) =0, ¥(1) =1+ A(1) = 2 so that ¥([0,1]) = [0, 2].

(b) Let ® := ¥, so that ® is also strictly increasing and continuous. Since
¥ and P are continuous, they are Borel (and hence Lebesgue) measurable. Thus if
B is a Borel set, then ®(B) = ¥~!(B) and ¥(B) = ®~!(B) are Borel sets.

(c)_ Let I := [0,1] = I". Since A is constant on each of the middle third
sets in I', we see that ¥ maps each middle third set into an interval of the same
length. Consequently, | ¥(T")| = |I| = 1. Since |[0, 2]| = 2, it follows from [0, 2] =
¥(I') U ¥(T) and ¥(T') N ¥(T) = 0, that we have 2 = |¥(T)| + |¥(I")], whence
¥ =1.

(d) Since W C ¥(I"), it follows that V := ¥—}(W) C ¥~}(¥(I")) = I. Since
T is a null set, then V is also a null set and therefore is Lebesgue measurable.

(e) Since ® is continuous, it is Lebesgue measurable. It was seen in (d) that
V is Lebesgue measurable.

(f) If V was a Borel set then, as seen in (b), W = ¥(V) is a Borel set,
contradicting its selection in (d) as a nonmeasurable set.

19.P (a) In the preceding exercise it was shown that ¥ is continuous and V' is
Lebesgue measurable, but W = ¥(V') is not measurable.

(b) Since ®~! = ¥, this follows from (a).

(c¢) In the notation of the preceding exercise, if f := 1y and g := ®, then f is
Lebesgue measurable and g is continuous, but (f o g)~}({1}) = &~ }(1;,'({1})) =
¥(V) = W. Hence f o g is not Lebesgue measurable.

19.Q (a) = (b) Let r € R and suppose that c € {f < r} so that € := r— f(c) >
0. By (a) there exists § > 0 such that if |z — c| < J, then f(z) < f(c)+e=r.
Therefore z € {f <r}.
(b) = (a) Given £ > 0, the set {f < f(c) + €} is open. Since it contains ¢
there exists 6 > 0 such that if |z — ¢| < § then f(z) < f(c) +e.
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(b) & (c) The sets {f >r} and {f < r} are complementary.

(a) = (d) Given c € R, let ms := sup{f(z) : 0 < |z — ¢| < §}. Statement
(a) implies that given € > O there exists § > 0 such that ms < f(c) + €. Thus
inf{ms : 6 > 0} < f(c) + €. Since € > 0 is arbitrary, we have liminf f < f(c).

Since m; is an increasing function of § > 0, then }r;g ms = 521(1)1_'_ ms so that

the two definitions of the deleted limit superior are equal.

(d) = (e) If Ms := sup{f(z) : |z — c| < 6}, then M; = max{ms, f(c)} =
1(ms + £(c) + Ims — f(c)|). It follows from this that if 6!11& ms < f(c), then
sli%l+ Mj; = f(c). The equality of the two definitions is evident.

(e) = (a) If M5 — f(c) as § — 0+, then for any € > 0 there exists § > 0 such
that 0 < M; — f(c) < € so that M; < f(c) + &, which implies that f(z) < f(c)+¢
for |z —c| < 4.

19.R (a) If 1; is upper semicontinuous then J = {1; > }} is closed. Con-
versely, note that the sets {1; > r} have one of the forms 0, J,R.
(b) If f is the Dirichlet function on R, then li;n _H:lf f(z) =1 for any c. Thus

it is upper semicontinuous at c if and only if f(c) > 1 which happens if and only if
c is rational.

(c) It follows from (b) and (c) of the preceding exercise that f~1([r,s)) = {r <
F}n{f < s} is a Borel set. If a < b, then there exists N such that a +1/n < b for
n > N. Since (a,b) = Upe yla+1/n,b), then f~1((a,b)) = U2y f~([a+1/n,b))
is also a Borel set. Since every open set G is a countable union of open intervals it
follows that that f~!(G) is a Borel set.

19.S (a) Let fn(z) :=z™ for = € (-1, 1] and have period 2 (i.e., be such that
fa(z +2) = fo(z) for all z € R). It is easy to see that f(z) := inf{f,(z)} equals 1
when z =2n + 1,n € Z, and that f(z) = 0 elsewhere.

(b) Let € > 0. Since f(c) = inf{fn(c) : n € N}, there exists N such that
In(c) < f(c)+€/2. Since f is continuous, there exists § > 0 such that if |[z—c| < 4,
then |fn(z)—fn(c)| < €/2. But this implies that if |t —c| < §, then f(z) < fn(z) <
fn(c) +€/2 < f(c) + €. Thus f is upper semicontinuous at c.

19T (a) f E€ AandneN,let EN :={k€ E:k < N}, sothat EN isa
(possibly empty) finite set. Clearly the definition

a(EV):=) {ax: ke EV}

makes sense. Since the mapping N — o(E") is an increasing sequence, it either
converges to an element of R or is properly divergent to co. Thus a(E) makes sense
as an element of [0, 0o].

If (Ex)32, is a pairwise disjoint collection of sets in A and N € N, we note
that (EV)$, is also a pairwise disjoint collection of finite sets (most of which are
empty) and that (U, Ex)" = U2, E;. Since the terms in a finite sum can be
rearranged, it is evident that

oz((g_j1 Ek)N) = kz: o(EN).
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Since the order of summation and taking limit can be interchanged for nonnegative
series, we have

a(kL:J1 Ek) = ngnooa((gEk)N) — A;i_l.noo;a(E’:v)

oo 0o
=D Jim o(El) =3 a(E).
k=1 k=1

Thus « is a measure on A.

(b) Here the series ;- , ax is unconditionally convergent to some number A,
and every subseries is convergent to some number < A. The proof of countable
additivity is as in (a).

(c) Since we assume the series is absolutely (= unconditionally) convergent,
the order of summation and taking limit can be interchanged as in (a).

(d) If Et :={k € N:ax >0} and E~ := {k € N : a; < 0}, the subseries
Y {ax : k € E*} is properly divergent to co and the subseries Y {ax : k € E"} is
properly divergent to —oo.

19.U (a) Let R—C =|JZ,(an,bn), where the intervals are pairwise disjoint.
If ax,bx € R we define g to be linear on the open interval (ay, bx) by joining the
point (ax, f(ax)) to the point (b, f(bx)) by a line segment. If a;, = —oo, we define
g(z) := f(bx) on the open interval (—oo, bx); and if by = oo, we define g(z) := f(ax)
on the open interval (ax,00). Since the one-sided limits agree at the each of the
junction points a, bx, the function g is continuous on R. The boundedness assertion
is clearly satisfied.

(b) No. Let C :=J;2,[2n,2n + 1), so that C is closed. If g is a continuous
extension of f with g(z) — 0 as £ — oo, then we must also have f(z) — 0 as
z — too,z € C.

(c) Since h does not have a limit as z — 0+, any extension f would have the
same property, so that f cannot be continuous at 0.

19.V (a) If (B;)}_, € A is a decomposition of EU F, then (B; N E), is a
decomposition of E and (B; N F)L, is a decomposition of F. Since (B;NE)N(B;N
F)C ENF =0, then y(B;N(EUF)) = 4(B;N E)+v(B;N F). Using the triangle
inequality and summing, we obtain

E [V(B:n(EUF)| < Z lv(B: N E)| + Z [¥(B:i 0 F)| < |[YI(E) + (F),

i=1

from whlch it follows that |[y|(EUF) < |7|(E) + [y|(F).
On the other hand, given £ > 0 there is a decomposition (C;), of E and a
decomposition (D;)2; of F such that

Y Gz hI(B)-¢/2  and > |UDi)| 2 WI(F) —¢/2.
=1 i=1

If (B;)21™ is the union of these two decompositions, then it is a decomposition of
EUF, and we have

n+m

EIv(C,)I +ZI'¥(D = h(By)l.

=1 i=1
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Now the left side is > |y|(E) + ||(F) — ¢, and the right side is < |y|(E'U F). Since
€ > 0 is arbitrary, we conclude that |y|(E) + |v|(F) < lv|(E U F).

We therefore conclude that |y| is additive on A and an induction argument
shows that |y is finitely additive in the sense of 18.3(g).

(b) If EC F, then F = EU(F — E) and EN (F — E) =0, so that |y|(F) =
17I(E) + |7|(F — E) 2 |vI(E), showing that || is monotone.

If (B;)%, is a decomposition of E, we may relabel to obtain y(B;) > 0 for
i=1,.-.,rand y(B;) <0 fori=r+1,.--,n. We note that

S htEl =39 - 3 ) =+(JB) -1 U 5).
i=1 i=1

i=r+1 i=r+1

Since both terms on the right have absolute values < M, we have |v|(E) < 2M.

(c) If (Ex)g2, is a pairwise disjoint sequence in A with union E, then it follows
from the finite additivity of |y| and the fact that || is monotone that for any n € N,
we have

>~ (&) = i (U B) < (B,
k=1 k=1

so that 3737, [7|(Bx) < |vI(E).
On the other hand, if (C;)]_, is a decomposition of E, then it follows from the

countable additivity of v that
ZMC )= Z|7(U . ﬂEk)l -
< ZE |v(Cin EW)| = ZZ h(c N Eg)| < Z IvI(Ex),

i=1k=1 1i=1

where we have reversed the order of summation in the iterated sum with non-
negative terms. Taking the supremum over all decompositions (C;);_,, we have

IVI(E) < 3232, I(Ex).
Therefore the countable additivity of |y| is proved.

19.W (a) (=) If p is absolutely continuous with respect to m, given € > 0
there exists 7. > 0 such that if 0 < m(E) < 5. then 0 < u(E) <e. If m(E) =
then 0 < m(E) < 7, for all € > 0, so that 0 < u(E) < € for all € > 0, which implies
that u(E) =

(«=) Suppose that u is not absolutely continuous with respect to m. Then there
exists €9 > 0 such that for every k € N there exists Ax € A such that m(Ax) < 1/2%
but p(Ax) > €o. Now let A := limsup Ax = o ; Uy, Ak. For each n € N, we
have

0<m(4) < fjm(Ak) < f: 1/28 =1/2""1,
k=n k=n

so that m(A) = 0. However, u(A) = lim, p(Us=,, Ax) > €0 > 0, a contradiction.
(b) Argue as in (a).
(c) It follows from Exercise 19.T that m and p are measures on A. It is
clear that m(0) = 0 = w() and that if E # 0 then m(E) # 0 and u(E) #0. If
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m(E) < 1/2 then E = 0 so that u(E) = 0 < . Thus we can choose 7, := 1/2.
However, if g := 1 then for all k € N there exists a set Ax := {k} € A such that
u(Ax) < 1/k but m(Ax) > e =1.

19.X (=) If 4 is absolutely continuous with respect to Ag, given € > 0 there
exists 7 > 0 such that if A € By and Ag(A) < 7%, then 0 < y(4) < e. If
0<y<z< B, then0 < g(z) —g(y) = v((%,z]) < e when0 < z—y < 7.
Therefore g is continuous on [0, B]. Further, since 0 = Ag({y}) < 7, we have
0 <7({y}) < e for every € > 00 that v({y}) = 0. Thus y([y, z]) = v({y}U(v,=]) =
Y({y}) +7((%, z]) = 9(=) — 9(v)-

If {[ak,bk]}r-, is a nonoverlapping collection of closed intervals such that
Y k=1(bx — ax) < 7., then we have > ¢, (g(bx) — g(ax)) < €. Consequently, g
is an absolutely continuous function on [0, B].

(<) Suppose that g is absolutely continuous and let n. > 0 be such that if
{(ak, b))}, is a collection of nonoverlapping open intervals such that Y p_, (bx —
ak) < ne then 3¢ _, ((9(bx) — g(ax)) < . If Z € By and Ag(Z) = 0, we will show
that y(Z) = 0. Since g is continuous, it follows that v((a, b)) = g(b) — g(a).

Since A\o(Z) = 0, it follows from Theorem 18.18 that there exists an open set G
such that Z C G with A\(G—Z) < n. so that 0 < A(G) = M(G - Z)+Xo(Z) < 7e.
Since G is open, then G = |Jz,(ak,bx) for some disjoint sequence of open sets.
Therefore, for every n € N, we have Ao(Ux_(ax, b)) = > 51 (bk — ax) < 7, from
which it follows that

'y(U (ax, bk)) = v((ak b)) =D (9(bs) — g(ar)) <e.
k=1 k=1 k=1

Since n € N is arbitrary, we conclude that 0 < v(G) < ¢ and, since ¢ > 0 is
arbitrary, that 4(G) = 0. Therefore, an application of part (a) of the preceding
exercise implies that « is absolutely continuous with respect to Ag.

Section 20 Sequences of functions

20.A (a) Since F = EU(F — E) and EN(F — E) =0, it follows that m(F') =
m(E) + m(F — E) > m(E). If m(E) is finite, we can subtract it.

(b) Let By := A; and By i= Any1 —U_; Ak for n € N, so that | Jye; Bn =
Ure; Ak. Since the (B,) are pairwise disjoint and m(Bi) < m(Ax), then we have
m(Usz1 4x) = m(UiZ; Br) = 32 m(Bi) < 352, m(Ax) < oo.

(c) If m(Eyx) = oo for some k, the result is trivial; therefore we suppose oth-
erwise. Let A; := E; and Ay := Ex — Ex_ for n > 1. Thus (Ax) is a pair-
wise disjoint sequence in A and Ei = |Jj_, 4; and Uy, Ex = Up>, Ar. Now
m(Ax) = m(Ex) — m(BEx_) for k > 1 so that 3n , m(Ax) = m(Ey). Since
m is countably additive, we have m(Us; Ex) = mtuz‘_’__l Ar) = Y po m(Ak) =
limy Eﬁ:l 'm(Ak) =limy ‘m(EN)

(d) Let Ej := F, — Fy, so that (Ej) is an increasing sequence; since m(Fy) <
m(Fy) < oo, we have m(Ey) = m(Fy) — m(Fy). By part (c), we have

m(U) Be) = Jim m(Be) = lim [m(F) - m(F)] = m(F) - Jim m(Fy).

h—1
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But since |32, By = F; — N3, Fi, then m(Uy~, Bx) = m(F) — m(N;2, Fk)-
Combine this with the displayed equation, to obtain the conclusion.
(e) Let Fy := [k, 00) in M(R), so m(Ni=, Fi) = m(0) = 0, while m(F}) = co.

20.B (a) Recall that limsup Ay = (\,—, Dy, where D,, := i, Ax. Evidently
(Dy,) is a decreasing sequence and m(D,) < m(D;) < oo for all n € N. Also
Supy>, M(Ax) < m(Dy) so that limsup m(Ax) = lim, supy>, m(Ax) < limm(Dy).
By Exercise 20.A(d) we conclude that limm(D,,) = m((\>>, D,,) = m(limsup Ay).

(b) Take Ay := [k, 00) in M(R) so that limsup A, = @, while m(A4;) = .

(c) Since Y po; m(Ax) < 0o, given £ > 0 there exists K with Y 2> , m(Ax)
< e. Since limsup Ay C e Ak, we have m(limsup Ax) < m(Upe g Ax) <
3 re i m(Ak) < €, where we have used Exercise 20.A(b).

(d) Let Ax := [0, k] for k € N so that limsup Ax = [0, 00).

20.C If k € N let E; € A with m(Ejx) < 1/2* be such that (f) is uniformly
Cauchy and therefore uniformly convergent on E¢. Let F := limsup Ej so by the
Borel-Cantelli Lemma (Exercise 20.B(c)) we have m(F) = 0. If z € F° there exists
ks such that £ € E¢ for all k > k. Therefore f(z) := lim fi(z) exists for all z € F*°
and we set f(z) :=0 for z € F. Thus fi — f a.e., so f € M(A).

To see that the convergence is a.u., let 4 > 0 and let K be such that 1/2K-1 <
7. If Fg := 52 g Ej it follows from Exercise 20.A(b) that m(Fx) < 322 j m(E;)
< 1/2K-1 < ~. Since Fg C Eg, the sequence (fi) is a uniform Cauchy sequence
on F§, so it converges uniformly to f on Fg.

20.D (a) Not a.u., not meas., not mean. Ty(r) = (nr,00). Not VT or FT.

(b) a.u., meas., not mean. T,(r) = [0,n] for n < 1/r and Tp,(r) =0 ifn > 1/r.
Has VT and ET.

(c) a.u., meas., mean. T,(r) = [0,n] if n < 1/{/r and T,,(r) =0 if n > 1//r.
Has VT and ET. )

(d) Not a.u., not meas., not mean. T,(r) = [r,00). Not VT or FT.

(e) Not a.u., but meas., mean. T,(r) = Uy, [k, k + 1/k]. Not VT or FT.

(f) Not a.u., but meas., not mean. T,,(r) as in (e). Not VT or FT.

(g) a.u., meas., mean. Tn(r) = Use, [k, k + 1/k?). Has VT and FT.

(h) a.u., meas., mean. T,,(r) as in (g). Has VT and FT.

20.E By definition of a.u. convergence, there exists E, € M(R) with |E,| <
v/2 such that f, — f uniformly on E — E.,. By Theorem 18.19 there exists a closed
set F C E — E, such that |(E — E,) — F| < v/2. But since E C (E —E,)UE,, it
follows that E—F C ((E—E,)—F)UE, sothat |E-F| < |(E—E,)-F|+|E,| <~.
Moreover f, — f uniformly on F C E - E,.

20.F (a) The set T}, 41(r) is a union for k,j > n+ 1.

(b) If s > r, then {|fx — f;| > s} C {|fx — f3| >}

(c) Evidently {|fi — f51 > r} C {Ifi — fI > r/2}U{lf; — F| > r/2}.

(d) If = ¢ Tn(r), then |fi(z) — fi(z)| < r for all k,j > n. Let j — oo to get
|fx(z) — f(z)| < r for all k > n, so that = ¢ T, (r).

20.G (=) If (fx) is a uniform Cauchy sequence, then given r > 0 there exists
n(r) such that if k, j > n(r),z € X, then |fx(z) — f;j(z)| < r. Thus, if k,j > n(r),
then we have T}, (,.)(r) = 0, so that (fx) has the ECT property.
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_ («=) If (fi) has the ECT property, then given r > 0 there exists n(r) such that
To(ry(r) = 0. Therefore, if k,j > n(r),z € X, we have |fi(z) — f;(z)| < r. Since
this holds for all » > 0, the sequence (fi) is a uniform Cauchy sequence.

20.H (a) (=) If r,e > 0 are given, there exist B, € A such that m(B,) < ¢ and
(fx) is a uniform Cauchy sequence on B;S. Therefore there exists n(r) € N such
that Ty(r)(r) C B, so that m(T,(r)) < e for n > n(r). Since € > 0 is arbitrary, we
infer that m(T,(r)) — 0 as n — oo.

(«=) Suppose (fi) has the VCT property and let ¢ > 0. For each p € N there
exists n, € N such that m(T,,,(l/p)) < /2. Let B, = Upe, Tn,(1/p), so that
B, € A and m(B,) < e. Since T,.,(l/p) C B., it follows that if k,5 > n, and
z ¢ B, then |fi(z) — fj(z)| < 1/p. Then (fi) is a uniform Cauchy sequence on
Bg, so that (fi) is an almost uniform Cauchy sequence.

(b) If (fi) has the VCT property, then it is an almost uniform Cauchy sequence.
Thus, given p € N there exists a set E, € A with m(E,) < 1/p such that (fx) is
a uniform Cauchy sequence on E;. Therefore (fi) is uniformly convergent on E;
and we define f(z) := lim fi(z) for z € EJ. If Z := ﬂ°‘11 EJ, then Z is a null set
and we define f(z) :=0 for = € Z. Ewdently fe M(.A) is well defined and is the
“a.u. limit of (f).

(c) If (fi) has the VCT property, then for every r > 0,6 > 0, there exists
n(e) such that m(T,(,)(r)) < €. Since fi(z) — f(x), Exercise 20. F(d) implies that

To(e)(r) C T(ey(r) so that m(T()(r)) < €, whence m(T(r)) < € for n > n(e).
Therefore fi, f have the VT property.

20.I If (fi) has the FCT property, then for every r > 0 there exists n(r) in
N such that T,,(,)(r) has finite measure. If fi(z) — f(z) for z € X, it follows
from Exercise 20.F(d) that T,(,)(r) has finite measure, whence f, f have the FT
property.

20.J (a) Indeed, fi(z) — f(z) <= supy>, |fi(z) — f(z)| — 0 as n — oo.

(b) If z € T,(r), then |fx(z) — f(z)| > r for some k > n so that Yn(z) =
SUPkn 1fe(2) — F(2)] > 7.

(c) T,,(,.) (N=0 {1/),,(,.) >r}=0 < {1/'”(,.)(1') <r}=X < 0<
Yn(r)(x) <rforallz e X.

(d) In view of (b), we have m(T,(r)) = m({¥n > r}).

(e) In view of (b), we have m(T(r)(r)) = m({¥n(r) > T}).

20K (a) = (b) If fi — f a.u. on X, then (by Theorem 20.7) fx, f have the
VT property, so (by Lemma 20.10(d)) m({zb,. >r})—0asn— oo

(b) = (a) If (b) holds, then Lemma 20.10(d) implies that fx, f have the VT
property. Hence (by Theorem 20.7) the sequence (fi) converges a.u. to f.

(a,b) = (c) Evidently {¢,, > r} has finite measure for n sufficiently large. If
(a) also hold then fi(z) — f(z) a.e.

(c) = (a) If fx(z) — f(z) a.e., then we can redefine these functions on a null
set to get convergence on all of X. Moreover, the condition that m({¢n¢) > r})
is finite is also valid for the redefined functions. By Lemma 21.10(e) we conclude
that the new f, f have the FT property. Thus (by Theorem 20.8), we infer that
the sequence (fi) converges a.u. to f.

20.L This is immediate from the equivalence of (a) and (b) of 20.11.
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20.M (a) (fu(z)) is Cauchy <= SuPy jn |fi() — £5(z)] — 0 as n — oo.

() z € T,(r) <> |fi(z) — fi(z)| > r for some k,j > n Pn(z) =
SUPy j>n |fk(2) — f(2)| > .

(©) Tagry(r) =0 = {¢nr) >7}=0.

(d,e) Use part (b).

20.N Take fn := linnt1), S0 that (f,) converges to 0 everywhere, but not in
measure. Every subsequence of (f,,) also converges to 0 everywhere.

20.0 (2) If r > 0, then {|(fi+gx) —(F+9)| > r} C {Ifc—f| > r/2}U{lgx—9g| >
r/2}.

(b,c) Let fi(x) ;= 1/k and g(z) := z for z € [0, 00) and equal to O elsewhere.
Then fr — 0 uniformly and in measure. However, (fxg)(z) = z/k — 0 everywhere,
but not in measure since {fxg > 1} = (k,00). Also frg does not converge uniformly
on R.

20.P (a) If (fx) has the VCT property, then (by Exercise 20.H(b)) there exists
an A-measurable function g such that fr; — g a.u. and therefore in measure to
g. If the sequence (fi) also converges in measure to some function f, we want to
show that f = g a.e. Indeed, if » > 0, then since {|f —g| > r} C {|f — fx| >
r/2}U{lg - ful > /2}, we have m({|f — g| > r}) = 0. Since {|f — g > 0} =

o2 1{If — 9] > 1/n}, we conclude that f = g a.e.

(b) If (fx) converges in mean to f, then it also converges in measure, so we

can use part (a).

20.Q (a) On the interval [a,b) if & € N, then Egorov’s Theorem implies that
there exists Ex € M([a,b)) such that |[a,b) — Ex| < 1/k and f; — f uniformly on
Ey. Since Ey := [a,b) — Use; Bk C [a,b) — Ex, then |Eo| < 1/k for all k € N.
Therefore Ey is a null set in [a, b). Let By := Ey, By := Ey, B, := E, — ;‘;11 E;, so
that (Bp ) is a pairwise disjoint sequence in M with ;> g B = Uj2, Ej = [a,),
and such that f; — f uniformly on each B,,n > 1.

(b) Now let (I*)32; be an enumeration of the intervals [n,n + 1),n € Z. Let
E;, B be the sets for I* as constructed in part (a). Thus I‘ = |J;2, Bj. Let
By :=J;2, B}, so that By is a null set. Let By := B}, By := BjUE},---,B,, :=
(U= Bi)UER, - --. Since (f;) converges to f uniformly on each of the sets B}, E,
it converges to f uniformly on each set B,,n > 1. Moreover, the sets (B,) are
pairwise disjoint and R = | J;2 ; B,.

20.R (a) Suppose that fx(z) > fj(z) = f(z) for k < j; thus we have that
{Ifj = f1 <7} S {Ifi — £ < 7}, s0 that (fi) is M-convergent.

(b) If (fx) is M-convergent, then we have T,(r) = Upe {Ifx — fl > r} =
{Ifa = fI < }. Conversely, if T(r) = {Ifn — f| <}, and if j > n, then {|f; — f| >
r}CTu(r)={lfa - fl<r}

(c) Let fx := Ljk,00), S0 that fi(z) — 0 as k — oo. Clearly (fi) is M-
convergent. However, (fix) does not converge a.u. or in measure.

(d) If fx — f in measure and r > 0, then (b) implies that m(T,,(r)) = m({|fn—
f| > r}) = 0. Therefore f, f have the VT property, so Theorem 20.7 implies that
the convergence is a.u.

www.MathSchoolinternational.com


www.MathSchoolinternational.com

SECTION 20 SEQUENCES OF FUNCTIONS 71

20.5 Let By(r) := {|fk—f| > r} so Bi(r) € M(R) and | Bx(r)| < (1/7)l| fx—fll-
But since Tr(r) = Up—,, Be(r), then |Tn(r)| < (1/r) X5, Ifc —fll 2 0asn — oo
by the hypothesis. Therefore f, f have the VT property and so (fi) converges
a.u. to f.

20.T (a) By Lemma 20.17, if € > 0 there exists B € M(R) with |B] < oo such
that |w|| B < €. Therefore || f||s- < |lw|lgc < € for all f € F,,.

(b) Let fi := 1jk kt1/x), SO that f, — O everywhere and ||fx|| = 1/k — 0,
showing that fy — 0 in norm (and hence in measure). By either Vitali Theorem
20.19 or 20.20, we conclude that the collection F := {f)} is equifinite. However,
the function wo = Y .7, 1jk x+1/k does not belong to £(R), and any function
dominating F must also exceed wy.

20.U (a) Since AfNA; = (0,4 -Al)nA2 = As — A1 N Ay, then m(A§ NAp) =
m(Az) — m(A1)m(Az2) = (1 — m(A1))m(A2) = m(A§)m(Az2). The other parts are
similar.

(b) From part (a) and induction, we have

m (A5, N [Any 02N Ap,]) = m(45, )m(An; 0++-N Ap,)
= m(AD)m(An,) - (A, ).

We now use induction to show that m((A2, N---NAS )N (A, N---NAs,)) =
m(A: ) m(Ac )m(Am-+1) m(Aﬂk)
(c) If k € N, we have m(Af) = 1 —~ m(A;) < e~™(Ax), Thus if n < N, then

N
m(4SN - N AY) = m(A2) - - m(AS )—H(l m(Ak))<exp( Em(Ak)).
k=n k=n

Since Y2 ; m(Ay) diverges, then 7o m(Ax) also diverges for each n € N. Since
(4z N---N A%)y_, is a decreasing sequence in A and m(X) < oo, then

0< m(ﬂ Ak) = Jim m(n A°) < Jim exp( iv:m(Ak)) =

k=n k=n

for all n € N. Therefore, we have

[~ <IN )

m(liminf 42) =m(|J ) 45) =0.

n=1k=n

But since (lim sup Ak)c = liminf Ag, it follows that m(lim sup Ak) =
k—r00 k—o0 k—00

20.V (a) Indeed, if fn(z) — f(z), then po fo(z) — @ o f(z).

(b) If ¢ is not continuous at ¢ € R, there exists £o > 0 and a sequence (c,)
such that ¢, — ¢, but |p(c,) —p(c)| 2 €o. Let fo(z) :=cn and f(z) :=cfor z € R.
Then (f,,) converges uniformly to f, but (¢ o f,) does not converge at any point,
or in measure to po f.
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(c) If  is uniformly continuous and if |z — y| < &, then |p(z) — p(¥)| < e.
Thus, if | fo(z) — f(z)| < 6., then we have |p o fa(x) — ¢ o f(z)| < . Consequently,
if f» — £ uniformly (or a.u.) then @ o fn — w o f uniformly (or a.u.). Similarly,
{leofa—po fl>e} C {Ifn — fl >}

(d) If ¢ is not uniformly continuous, there exists ¢ > 0 and sequences (zp ), (¥n)
in R such that |z, — | < 1/n but [p(zn) — @(yn)| > €. Let fn,f be defined on
R by fa(z) := 0 =: f(z) for < 0 and f(z) := zi for z € [k —1,k),k € N, and
fn(x) = yx for z € [k — 1,k) and fn(z) := f(z) elsewhere on [0,00). Then (f5)
converges uniformly, and hence almost uniformly and in measure to f, but (po f,)
does not converge uniformly, almost uniformly, or in measure to p o f.

20.W (a) Let () := 1+|¢| for t € R and f(z) :=1 for z € [0, 1] and f(z) := 0
elsewhere on R. Then (p o f)(z) =1 for = ¢ [0,1], so that po f ¢ L(R).

(b) Indeed, ¢ o f is measurable and is bounded by P|f|, whence we have
wof € LR).

(c) If () does not hold, then for any n € N there exists ¢, € R such that
|¢(tn)] > nlta]. The sequence (Jtn|) is not bounded, else there is a subsequence
converging to o where |p(to)| = 00, a contradiction. We may suppose that ¢, > 1
for n € N. Let ay, := 1/n%t,, so that the series 3" a,, is dominated by 3~ 1/n? and
thus is convergent. Let A, := Y°p_,ax and A := Y17 ax. Let f(t) :=t, for
z € [An_1/A,An/A) and f(z) :=0for = ¢ [0,1). Then 2 |fl=Y,>,1/nAis
convergent, while [*_|po f| > (1/A) Yar; 1/n is divergent.

(d) Vitali’s Theorem 20.19 implies that f, — f in measure, and that the
collection {f,} is equifinite on R and uniformly absolutely continuous. It follows
from Exercise 20.V(c) that ¢ o f, — o f in measure. Also, given € > 0 there
exists B € M(R) with [B| < oo such that [g.|fs] < &. Thus [p.lpo fal <
P { ge |fa] < Pe, and {p o f,,} is equifinite. Similarly, there exists d, > 0 such that
if |E| < é., then [ |fal <€, whence [ |p o fu| < P [glfal < Pe, and {po fa}
is uniformly absolutely continuous. Consequently, by Vitali’s Theorem we deduce
that po f, — po f in mean.

(e) Let f € L(R) be as in part (c) and let f,(z) := f(z) for z € [0, A,/A) and
f(z) := 0 elsewhere on R. Then ||f,, — fll < ¥32,.,,1/k%A, so that f, — f in
mean, while [[po f, —po fll 23512, 1/kA, so that o f, /5 po f in mean.
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