Question \# 1 Show that
(i) $r=4 R \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \sin \frac{\gamma}{2}$
(ii) $s=4 R \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2}$

Solution

(i) R.H.S $=4 R \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \sin \frac{\gamma}{2}$

$$
\begin{aligned}
& =4 R \sqrt{\frac{(s-b)(s-c)}{b c}} \sqrt{\frac{(s-a)(s-c)}{a c}} \sqrt{\frac{(s-a)(s-b)}{a b}} \\
& =4 R \sqrt{\frac{(s-b)(s-c)(s-a)(s-c)(s-a)(s-b)}{(b c)(a c)(a b)}} \\
& =4 R \sqrt{\frac{(s-a)^{2}(s-b)^{2}(s-c)^{2}}{a^{2} b^{2} c^{2}}} \\
& =4 R \frac{(s-a)(s-b)(s-c)}{a b c}
\end{aligned}
$$

$$
=4\left(\frac{a b c}{4 \Delta}\right) \frac{(s-a)(s-b)(s-c)}{a b c} \quad \because R=\frac{a b c}{4 \Delta}
$$

$$
=\frac{(s-a)(s-b)(s-c)}{\Delta}
$$

$$
=\frac{s(s-a)(s-b)(s-c)}{s \Delta}
$$

$$
=\frac{\Delta^{2}}{s \Delta}
$$

$$
=\frac{\Delta}{s}
$$

$$
=r=\text { L.H.S }
$$

Solution

(ii) R.H.S $=4 R \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2}$

$$
\begin{array}{ll}
=4 R \sqrt{\frac{s(s-a)}{b c}} \sqrt{\frac{s(s-b)}{a c}} \sqrt{\frac{s(s-c)}{a b}} & \\
=4 R \sqrt{\frac{s^{2} \cdot s(s-a)(s-b)(s-c)}{(b c)(a c)(a b)}} & \because \Delta=\sqrt{s(s} \\
=4 R \sqrt{\frac{s^{2} \Delta^{2}}{a^{2} b^{2} c^{2}}} & \Delta^{2}=s(s- \\
=4 R \frac{s \Delta}{a b c} & \because R=\frac{a b c}{4 \Delta} \\
=4\left(\frac{a b c}{4 \Delta}\right) s \frac{\Delta}{a b c} &
\end{array}
$$

$$
\downarrow
$$

$$
\text { (iii) } \begin{array}{rlr}
\text { R.H.S } & =4 R r \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2} & \\
& =4 R r \sqrt{\frac{s(s-a)}{b c}} \cdot \sqrt{\frac{s(s-b)}{c a}} \cdot \sqrt{\frac{s(s-c)}{a b}} & \\
\cos \frac{\alpha}{2}=\sqrt{\frac{s(s-a)}{b c}} \\
& =4 R r \sqrt{\frac{s(s-a) \cdot s(s-b) \cdot s(s-c)}{\frac{(b c)(a c)(a b)}{2}}}=\sqrt{\frac{s(s-b)}{a c}} \\
& =4 R r \sqrt{\frac{s^{2} \cdot s(s-a)(s-b)(s-c)}{\left(a^{2} b^{2} c^{2}\right.}} & \cos \frac{\gamma}{2}=\sqrt{\frac{s(s-c)}{a b}} \\
& =4 R r \sqrt{\frac{s^{2} \cdot \Delta^{2}}{a^{2} b^{2} c^{2}}} &
\end{array} \begin{aligned}
& \because \Delta=\sqrt{s(s-a)(s-b)(s-c)} \\
&
\end{aligned} \begin{array}{ll}
=4 R r \frac{s \Delta}{a b c} &
\end{array}
$$

Question \# 9 Show that

(i) $\frac{1}{2 r R}=\frac{1}{a b}+\frac{1}{b c}+\frac{1}{c a}$
(ii) $\frac{1}{r}=\frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{r_{3}}$

Solution
(i) L.H.S $=\frac{1}{2 r R}$

$$
\begin{aligned}
& =\frac{1}{2\left(\frac{\Delta}{s}\right)\left(\frac{a b c}{4 \Delta}\right)} \\
& =\frac{4 s \Delta}{2 \Delta a b c} \\
& =\frac{2 s}{a b c} \\
& =\frac{a+b+c}{a b c} \\
& =\frac{a}{a b c}+\frac{b}{a b c}+\frac{c}{a b c} \\
& =\frac{1}{b c}+\frac{1}{a c}+\frac{1}{a b} \\
& =\frac{1}{a b}+\frac{1}{b c}+\frac{1}{c a}=\text { R.H.S }
\end{aligned}
$$

(ii) R.H.S $=\frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{r_{3}}$
$=\frac{1}{\frac{\Delta}{s-a}}+\frac{\frac{1}{\frac{\Delta}{s-b}}}{\frac{1}{\frac{\Delta}{s-c}}}$
$\because r_{1}=\frac{\Delta}{s-a}$

$$
r_{2}=\frac{\Delta}{s-b}
$$

$=\frac{s-a}{\Delta}+\frac{s-b}{\Delta}+\frac{s-c}{\Delta}$

$$
r_{3}=\frac{\Delta}{s-c}
$$

$=\frac{s-a+s-b+s-c}{\Delta}$
$=\frac{3 s-(a+b+c)}{\Delta}$
$=\frac{3 s-2 s}{\Delta}$
$\because 2 s=a+b+c$
$=\frac{s}{\Delta}$
$=\frac{1}{\Delta}$
$=\frac{1}{r}$
$\because r=\frac{\Delta}{s}$
L.H.S

Question \# 10 Prove that:

Solution
(i) $r=\frac{a \sin \frac{\beta}{2} \sin \frac{\gamma}{2}}{\cos \frac{\alpha}{2}}$
(ii) $r=\frac{b \sin \frac{\alpha}{2} \sin \frac{\gamma}{2}}{\cos \frac{\beta}{2}}$
(i) R.H.S $=\frac{a \sin \frac{\beta}{2} \sin \frac{\gamma}{2}}{\cos \frac{\alpha}{2}}$
$=a \sqrt{\frac{(s-a)(s-c)}{a c}} \sqrt{\frac{(s-a)(s-b)}{a b}} \frac{1}{\sqrt{\frac{s(s-a)}{b c}}}$
$=a \sqrt{\frac{(s-a)(s-c)}{a c}} \sqrt{\frac{(s-a)(s-b)}{a b}} \sqrt{\frac{b c}{s(s-a)}}$
$=a \sqrt{\frac{(s-a)(s-c)(s-a)(s-b)(b c)}{(a c)(a b) s(s-a)}}$
$=a \sqrt{\frac{(s-a)(s-b)(s-c)}{a^{2} s}}=a \sqrt{\frac{s(s-a)(s-b)(s-c)}{a^{2} s^{2}}}$
$=a \frac{\sqrt{s(s-a)(s-b)(s-c)}}{a s}=\frac{\Delta}{s}=r=$ L.H.S
(ii) R.H.S $=\frac{b \sin \frac{\alpha}{2} \sin \frac{\gamma}{2}}{\cos \frac{\beta}{2}}$

Question \# 11 Prove that: $a b c(\sin \alpha+\sin \beta+\sin \gamma)=4 \Delta s$

Solution

L.H.S $=a b c(\sin \alpha+\sin \beta+\sin \gamma)$

$$
\begin{array}{ll}
=a b c\left(\frac{2 \Delta}{b c}+\frac{2 \Delta}{a c}+\frac{2 \Delta}{a b}\right) & \because \Delta=\frac{1}{2} a b \sin \gamma=\frac{1}{2} b c \sin \alpha=\frac{1}{2} c a \sin \beta \\
=a b c\left(\frac{2 \Delta a+2 \Delta b+2 \Delta c}{a b c}\right) & \Rightarrow \sin \gamma=\frac{2 \Delta}{a b}, \sin \alpha=\frac{2 \Delta}{b c}, \sin \beta=\frac{2 \Delta}{c a} \\
=2 \Delta a+2 \Delta b+2 \Delta c & \\
=2 \Delta(a+b+c) & \\
=2 \Delta(2 s)=4 \Delta s=\text { R.H.S } & \ddots 2 s=a+b+c
\end{array}
$$

$\frac{\text { Question \# 12 }}{}$ Prove tha
$\frac{\text { Solution }}{\text { (i) L.H.S }}=\left(r_{1}+r_{2}\right) \tan \frac{\gamma}{2}$

$$
\begin{aligned}
& =\left(\frac{\Delta}{s-a}+\frac{\Delta}{s-b}\right) \sqrt{\frac{(s-a)(s-b)}{s(s-c)}} \\
& =\left(\frac{\Delta(s-b)+\Delta(s-a)}{(s-a)(s-b)}\right) \sqrt{\frac{(s-a)(s-b)}{s(s-c)} \cdot \frac{s(s-c)}{s(s-c)}} \\
& =\Delta\left(\frac{s-b+s-a}{(s-a)(s-b)}\right) \sqrt{\frac{s(s-a)(s-b)(s-c)}{s^{2}(s-c)^{2}}} \\
& =\Delta\left(\frac{2 s-a-b}{(s-a)(s-b)}\right) \sqrt{\frac{\Delta^{2}}{s^{2}(s-c)^{2}}} \\
& \left.=\Delta\left(\frac{a+b+c-a-b}{\frac{(s-a)(s-b)}{s(s-c)}}\right) \frac{\Delta}{s-a)(s-b)}\right) \\
& =\frac{\Delta^{2} c}{s(s-c)} \\
& s(s-a)(s-b)(s-c)
\end{aligned}=\frac{\Delta^{2} c}{\Delta^{2}}=c=\text { R.H.S } \quad \because \Delta=\sqrt{s(s-a)(s-b)(s-c)}
$$

(ii) L.H.S $=\left(r_{3}-r\right) \cot \frac{\gamma}{2}$

$$
\begin{aligned}
& =\left(\frac{\Delta}{s-c}-\frac{\Delta}{s}\right) \frac{1}{\tan \frac{\gamma}{2}}=\Delta\left(\frac{1}{s-c}-\frac{1}{s}\right) \frac{1}{\sqrt{\frac{(s-a)(s-b)}{s(s-c)}}} \\
& =\Delta\left(\frac{s-(s-c)}{s(s-c)}\right) \sqrt{\frac{s(s-c)}{(s-a)(s-b)}} \\
& =\Delta\left(\frac{c}{s(s-c)}\right) \sqrt{\frac{s(s-c)}{(s-a)(s-b)} \cdot \frac{s(s-c)}{s(s-c)}} \\
& =\Delta\left(\frac{c}{s(s-c)}\right) \sqrt{\frac{s(s-c)}{2(s-a)(s-b)(s-c)}}=\sqrt{\frac{(s-a)(s-b)}{s(s-c)}} \\
& =\Delta\left(\frac{c}{s(s-c)}\right) \frac{s(s-c)}{\Delta}=c=\text { R.H.S }
\end{aligned}
$$

Question \# 2 Show that:

Solution

$$
r=a \sin \frac{\beta}{2} \sin \frac{\gamma}{2} \sec \frac{\alpha}{2}=b \sin \frac{\gamma}{2} \sin \frac{\alpha}{2} \sec \frac{\beta}{2}=c \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \sec \frac{\gamma}{2}
$$

take $\quad a \sin \frac{\beta}{2} \sin \frac{\gamma}{2} \sec \frac{\alpha}{2}$

$$
\begin{aligned}
& =a \sin \frac{\beta}{2} \sin \frac{\gamma}{2} \frac{1}{\cos \frac{\alpha}{2}} \\
& =a \sqrt{\frac{(s-a)(s-c)}{a c}} \sqrt{\frac{(s-a)(s-b)}{a b}} \frac{1}{\sqrt{\frac{s(s-a)}{b c}}} \\
& =a \sqrt{\frac{(s-a)(s-c)}{a c}} \sqrt{\frac{(s-a)(s-b)}{a b}} \sqrt{\frac{b c}{s(s-a)}}
\end{aligned}
$$

$$
\because \sin \frac{\beta}{2}=\sqrt{\frac{(s-c)(s-a)}{c a}}
$$

$$
\sin \frac{\gamma}{2}=\sqrt{\frac{(s-a)(s-b)}{a b}}
$$

$$
\because \cos \frac{\alpha}{2}=\sqrt{\frac{s(s-a)}{b c}}
$$

$$
=a \sqrt{\frac{(s-a)(s-c)(s-a)(s-b)(b c)}{(a c)(a b) s(s-a)}}
$$

$$
=a \sqrt{\frac{(s-a)(s-b)(s-c)}{a^{2} s}}=a \sqrt{\frac{s(s-a)(s-b)(s-c)}{a^{2} s^{2}}}
$$

$$
=a \frac{\sqrt{s(s-a)(s-b)(s-c)}}{a s}=\frac{\Delta}{s}=r \quad \because \Delta=\sqrt{s(s-a)(s-b)(s-c)}
$$

$$
\begin{equation*}
\Rightarrow a \sin \frac{\beta}{2} \sin \frac{\gamma}{2} \sec \frac{\alpha}{2}=r \tag{i}
\end{equation*}
$$

Similarly prove yourself

$$
\begin{align*}
& b \sin \frac{\gamma}{2} \sin \frac{\alpha}{2} \sec \frac{\beta}{2}=r \tag{ii}\\
& c \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \sec \frac{\gamma}{2}=r \tag{iii}
\end{align*}
$$

From (i), (ii) and (iii)
$r=a \sin \frac{\beta}{2} \sin \frac{\gamma}{2} \sec \frac{\alpha}{2}=b \sin \frac{\gamma}{2} \sin \frac{\alpha}{2} \sec \frac{\beta}{2}=c \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \sec \frac{\gamma}{2}$

Question \# 3 Show that:
(i) $r_{1}=4 R \sin \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2} \quad$ (ii) $r_{2}=4 R \cos \frac{\alpha}{2} \sin \frac{\beta}{2} \cos \frac{\gamma}{2} \quad$ (iii) $r_{3}=4 R \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \sin \frac{\gamma}{2}$

Solution

(i) R.H.S $=4 R \sin \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2}$

$$
\begin{aligned}
& =4 R \sqrt{\frac{(s-b)(s-c)}{b c}} \sqrt{\frac{s(s-b)}{a c}} \sqrt{\frac{s(s-c)}{a b}} \\
& =4 R \sqrt{\frac{(s-b)(s-c) s(s-b) s(s-c)}{(b c)(a c)(a b)}} \\
& =4 R \sqrt{\frac{s^{2}(s-b)^{2}(s-c)^{2}}{a^{2} b^{2} c^{2}}} \\
& =4 R \frac{s(s-b)(s-c)}{a b c} \\
& =4 \frac{a b c}{4 \Delta} \frac{s(s-b)(s-c)}{a b c} \frac{(s-a)}{(s-a)}
\end{aligned} \because R=\frac{a b c}{4 \Delta} .
$$

$$
=\frac{s(s-a)(s-b)(s-c)}{\Delta(s-a)}
$$

$$
=\frac{\Delta^{2}}{\Delta(s-a)}
$$

$$
=\frac{\Delta}{(s-a)}
$$

$$
=r_{1}=\text { R.H.S }
$$

(ii) \& (iii)

Question \# 4 Show that:
(i) $r_{1}=s \tan \frac{\alpha}{2}$
(ii) $r_{2}=s \tan \frac{\beta}{2}$
(iii) $r_{3}=s \tan \frac{\gamma}{2}$

Solution

$$
\text { (i) } \begin{aligned}
\text { R.H.S } & =s \tan \frac{\alpha}{2} \\
& =s \sqrt{\frac{(s-b)(s-c)}{s(s-a)}} \\
& =s \sqrt{\frac{(s-b)(s-c)}{s(s-a)} \cdot \frac{s(s-a)}{s(s-a)}}=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}} \\
& =s \sqrt{\frac{s(s-a)(s-b)(s-c)}{s^{2}(s-a)^{2}}} \\
& =s \sqrt{\frac{\Delta^{2}}{s^{2}(s-a)^{2}}} \\
& =s \frac{\Delta}{s(s-a)} \\
& =\frac{\Delta}{(s-a)} \\
& =r_{1} \\
& =\text { L.H.S }
\end{aligned}
$$

(ii) \& (iii)

$$
\downarrow
$$

Question \# 5 Prove that:
(i) $r_{1} r_{2}+r_{2} r_{3}+r_{3} r_{1}=s^{2}$
(ii) $r r_{1} r_{2} r_{3}=\Delta^{2}$
(iii) $r_{1}+r_{2}+r_{3}-r=4 R$
(iv) $r_{1} r_{2} r_{3}=r s^{2}$

$\underline{\text { Solution }}$

(i) L.H.S $=r_{1} r_{2}+r_{2} r_{3}+r_{3} r_{1}$

$$
\begin{aligned}
& =\left(\frac{\Delta}{s-a}\right)\left(\frac{\Delta}{s-b}\right)+\left(\frac{\Delta}{s-b}\right)\left(\frac{\Delta}{s-c}\right)+\left(\frac{\Delta}{s-c}\right)\left(\frac{\Delta}{s-a}\right) \\
& =\frac{\Delta^{2}}{(s-a)(s-b)}+\frac{\Delta^{2}}{(s-b)(s-c)}+\frac{\Delta^{2}}{(s-c)(s-a)} \\
& =\Delta^{2}\left(\frac{1}{(s-a)(s-b)}+\frac{1}{(s-b)(s-c)}+\frac{1}{(s-c)(s-a)}\right) \\
& =\Delta^{2}\left(\frac{s-c+s-a+s-b}{(s-a)(s-b)(s-c)}\right) \\
& =\Delta^{2}\left(\frac{3 s-(a+b+c)}{(s-a)(s-b)(s-c)}\right) \\
& =\Delta^{2}\left(\frac{3 s-2 s}{(s-a)(s-b)(s-c)}\right) \\
& =\Delta^{2}\left(\frac{r_{3}}{s} \frac{s}{(s-a)(s-b)(s-c)} \cdot \frac{s}{s}\right) \\
& =\Delta^{2}\left(\frac{s^{2}}{s(s-a)(s-b)(s-c)}\right) \\
& =\Delta^{2}\left(\frac{s^{2}}{\Delta^{2}}\right) \\
& \quad \because \quad \frac{a+b+c}{2} \\
& s^{2}
\end{aligned}
$$

$$
=s^{2}=\text { R.H.S }
$$

(ii) L.H.S $=r r_{1} r_{2} r_{3}$

$$
\begin{array}{lll}
=r r_{1} r_{2} r_{3} & \because r=\frac{\Delta}{s} & r_{1}=\frac{\Delta}{s-a} \\
=\left(\frac{\Delta}{s}\right)\left(\frac{\Delta}{s-a}\right)\left(\frac{\Delta}{s-b}\right)\left(\frac{\Delta}{s-c}\right) & r_{2}=\frac{\Delta}{s-b} & r_{3}=\frac{\Delta}{s-c} \\
=\frac{\Delta^{4}}{s(s-a)(s-b)(s-c)} & \\
=\frac{\Delta^{4}}{\Delta^{2}} & \ddots \Delta=\sqrt{s(s-a)(s-b)(s-c)} \\
=\Delta^{2}=\text { R.H.S } & \Delta^{2}=s(s-a)(s-b)(s-c)
\end{array}
$$

(iii) L.H.S $=r_{1}+r_{2}+r_{3}-r$

$$
\begin{aligned}
& =\frac{\Delta}{s-a}+\frac{\Delta}{s-b}+\frac{\Delta}{s-c}-\frac{\Delta}{s} \\
& =\Delta\left(\frac{1}{s-a}+\frac{1}{s-b}+\frac{1}{s-c}-\frac{1}{s}\right) \\
& =\Delta\left(\frac{(s-b)+(s-a)}{(s-a)(s-b)}++\frac{s-(s-c)}{s(s-c)}\right) \\
& =\Delta\left(\frac{2 s-b-a}{(s-a)(s-b)}+\frac{s-s+c}{s(s-c)}\right) \\
& =\Delta\left(\frac{a+b+c-b-a}{(s-a)(s-b)}+\frac{c}{s(s-c)}\right) \\
& =\Delta\left(\frac{c}{(s-a)(s-b)}+\frac{c}{s(s-c)}\right)
\end{aligned}
$$

$$
=c \Delta\left(\frac{1}{(s-a)(s-b)}+\frac{1}{s(s-c)}\right)
$$

$$
=c \Delta\left(\frac{s(s-c)-(s-a)(s-b)}{s(s-a)(s-b)(s-c)}\right)
$$

$$
=c \Delta\left(\frac{s^{2}-s c+s^{2}-a s-b s+a b}{\Delta^{2}}\right)
$$

$$
=c\left(\frac{2 s^{2}-s(a+b+c)+a b}{\Delta}\right)
$$

$$
=c\left(\frac{2 s^{2}-s(2 s)+a b}{\Delta}\right)
$$

$$
=c\left(\frac{2 s^{2}-2 s^{2}+a b}{\Delta}\right)
$$

$$
=\frac{a b c}{\Delta}=4 \cdot \frac{a b c}{4 \Delta}=4 R=\text { R.H.S } \quad \because R=\frac{a b c}{4 \Delta}
$$

(iv) L.H.S $=\left(\frac{\Delta}{s-a}\right)\left(\frac{\Delta}{s-b}\right)\left(\frac{\Delta}{s-c}\right)$

$$
\begin{aligned}
& =\frac{\Delta^{3}}{(s-a)(s-b)(s-c)} \\
& =\frac{s \Delta^{3}}{s(s-a)(s-b)(s-c)} \\
& =\frac{s \Delta^{3}}{\Delta^{2}}=s \Delta \\
& =s^{2} \frac{\Delta}{s}=s^{2} r=r s^{2}=\text { R.H.S }
\end{aligned}
$$

Question \# 6 Find R, r, r_{1}, r_{2} and r_{3}, if measures of the sides of triangle $A B C$ are
(i) $a=13, b=14, c=15$
(ii) $a=34, \quad b=20, \quad, \quad c=42$

Solution

(i) $\begin{aligned} a & =13, b=14, \quad c=15 \\ s & =\frac{a+b+c}{2}=\frac{13+14+15}{2}=21\end{aligned}$

$$
\begin{aligned}
\Delta & =\sqrt{s(s-a)(s-b)(s-c)} \\
& =\sqrt{21(21-13)(21-14)(21-15)} \\
& =\sqrt{21(8)(7)(6)}=\sqrt{7056}=84
\end{aligned}
$$

Now $R=\frac{a b c}{4 \Delta}=\frac{(13)(14)(15)}{4(84)}=8.125$

$$
\begin{aligned}
& r=\frac{\Delta}{s}=\frac{84}{21}=4 \\
& r_{1}=\frac{\Delta}{s-a}=\frac{84}{8}=10.5 \\
& r_{2}=\frac{\Delta}{s-b}=\frac{84}{7}=12 \\
& r_{3}=\frac{\Delta}{s-c}=\frac{84}{6}=14
\end{aligned}
$$

(ii) $a=34, \quad b=20, \quad c=42$

Question \# 7 Prove that in an equilateral triangle,
(i) $r: R: r_{1}=1: 2: 3$
(ii) $r: R: r_{1}: r_{2}: r_{3}=1: 2: 3: 3: 3$

Solution

(ii) In equilateral triangle all the sides are equal so $a=b=c$

Now $\Delta=\sqrt{s(s-a)(s-b)(s-c)}$
$s=\frac{a+b+c}{2}=\frac{a+a+a}{2}=\frac{3 a}{2}$

$$
=\sqrt{s(s-a)(s-a)(s-a)}
$$

$s-a=\frac{3 a}{2}-a=\left(\frac{3}{2}-1\right) a=\frac{1}{2} a$

$$
=\sqrt{s(s-a)^{3}}
$$

$$
=\sqrt{\frac{3 a}{2}\left(\frac{1}{2} a\right)^{3}}
$$

$$
=\sqrt{\frac{3 a}{2}\left(\frac{a^{3}}{8}\right)}=\sqrt{\frac{3 a^{4}}{16}}=\frac{\sqrt{3} a^{2}}{4}
$$

Now $r=\frac{\Delta}{s}$

$$
=\frac{\sqrt{3} a^{2} / 4}{3 a / 2}=\frac{\sqrt{3} a^{2}}{4} \cdot \frac{2}{3 a}=\frac{\sqrt{3} a}{6}
$$

Now
$r: R: r_{1}: r_{2}: r_{3}=\frac{\sqrt{3} a}{6}: \frac{\sqrt{3} a}{3}: \frac{\sqrt{3} a}{2}: \frac{\sqrt{3} a}{2}: \frac{\sqrt{3} a}{2}$

$$
=1: 2: 3: 3: 3 \quad \times \text { ing by } \frac{6}{\sqrt{3} a}
$$

(i) Do yourself

Question \# 8 Prove that:
(i) $\Delta=r^{2} \cot \frac{\alpha}{2} \cot \frac{\beta}{2} \cot \frac{\gamma}{2}$
(ii) $r=s \tan \frac{\alpha}{2} \tan \frac{\beta}{2} \tan \frac{\gamma}{2}$
(iii) $\Delta=4 R r \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2}$

Solution

(i) R.H.S $=r^{2} \cot \frac{\alpha}{2} \cot \frac{\beta}{2} \cot \frac{\gamma}{2}$

$$
\begin{aligned}
& =r^{2} \frac{1}{\tan \frac{\alpha}{2}} \cdot \frac{1}{\tan \frac{\beta}{2}} \cdot \frac{1}{\tan \frac{\gamma}{2}} \\
& =r^{2} \frac{1}{\sqrt{\frac{(s-b)(s-c)}{s(s-a)}} \cdot \frac{1}{\sqrt{\frac{(s-a)(s-c)}{s(s-b)}}} \cdot \frac{1}{\sqrt{\frac{(s-a)(s-b)}{s(s-c)}}}} \\
& =r^{2} \sqrt{\frac{s(s-a)}{(s-b)(s-c)}} \cdot \sqrt{\frac{s(s-b)}{(s-a)(s-c)}} \cdot \sqrt{\frac{s(s-c)}{(s-a)(s-b)}} \\
& =r^{2} \sqrt{\frac{s^{3}(s-a)(s-b)(s-c)}{(s-a)^{2}(s-b)^{2}(s-c)^{2}}} \\
& =r^{2} \sqrt{\frac{s^{3}}{(s-a)(s-b)(s-c)}} \\
& =r^{2} \sqrt{\frac{s^{3}}{(s-a)(s-b)(s-c)} \cdot \frac{s}{s}} \\
& =r^{2} \sqrt{\frac{s^{4}}{s(s-a)(s-b)(s-c)}} \\
& =r^{2} \sqrt{\frac{s^{4}}{\Delta^{2}}} \\
& =r^{2} \\
& =\frac{s^{2}}{\Delta} \\
& \left.=\frac{\Delta}{s}\right)^{2} \frac{s^{2}}{\Delta} \\
& \because r=\frac{\Delta}{s} \\
& =\frac{\Delta^{2}}{s^{2}} \frac{s^{2}}{\Delta} \\
& =\Delta=\mathrm{L} \cdot \mathrm{H} \cdot \mathrm{~S}
\end{aligned}
$$

