Trigonometric Functions

Exercise 12.5 (Solution) for Class XI
Question \# 1 Solve the following triangle $A B C$ in which:

$$
b=95, \quad c=34, \quad \alpha=52^{\circ} .
$$

Solution

$$
b=95, \quad c=34, \quad \alpha=52^{\circ} .
$$

By law of cosine

$$
\begin{aligned}
a^{2} & =b^{2}+c^{2}-2 b c \cos \alpha \\
& =(95)^{2}+(34)^{2}-2(95)(34) \cos 52^{\circ} \\
& =9025+1156-6460(0.6157) \\
& =6203.578 \\
\Rightarrow \quad a & =\sqrt{6203.578} \\
a & =78.76
\end{aligned}
$$

Again by law of cosine

$$
b^{2}=c^{2}+a^{2}-2 c a \cos \beta
$$

$\Rightarrow \cos \beta=\frac{c^{2}+a^{2}-b^{2}}{2 c a}$

$$
\begin{aligned}
& =\frac{(34)^{2}+(78.76)^{2}-(95)^{2}}{2(34)(78.76)} \\
& =\frac{1156+6203.138-9025}{5355.68} \\
& =-\frac{1665.862}{5355.68} \\
& =-0.311
\end{aligned}
$$

$$
\Rightarrow \quad \beta=\cos ^{-1}(-0.311)
$$

$$
\beta=108^{\circ} 7^{\prime} 20^{\prime \prime}
$$

Since in any triangle

$$
\alpha+\beta+\gamma=180
$$

$$
\Rightarrow \begin{aligned}
& \alpha+\beta+\gamma=180 \\
& \gamma=180-\alpha-\beta \\
& =180^{\circ}-52^{\circ}-108^{\circ} 7^{\prime} 20^{\prime \prime} \\
& \gamma=19^{\circ} 52^{\prime} 40^{\prime \prime}
\end{aligned}
$$

Question \# 2 Solve the following triangle $A B C$ in which:

$$
\overline{b=12.5} \quad, \quad c=23 \quad, \quad \alpha=38^{\circ} 20^{\prime}
$$

Solution

$$
b=12.5 \quad, \quad c=23 \quad, \quad \alpha=38^{\circ} 20^{\prime}
$$

By law of cosine

$$
\begin{aligned}
a^{2} & =b^{2}+c^{2}-2 b c \cos \alpha \\
& =(12.5)^{2}+(23)^{2}-2(12.5)(23) \cos 38^{\circ} 20^{\prime} \\
& =156.25+529-575(0.7844) \\
& =234.21 \\
\Rightarrow \quad a & =\sqrt{234.21} \\
a & =15.304
\end{aligned}
$$

Again by law of cosine

$$
\begin{aligned}
\cos \beta & =\frac{c^{2}+a^{2}-b^{2}}{2 c a} \\
b^{2} & =c^{2}+a^{2}-2 c a \cos \beta \\
& =\frac{(23)^{2}+(15.304)^{2}-(12.5)^{2}}{2(23)(15.304)} \\
& =\frac{529+234.21-156.25}{703.984} \\
& =\frac{606.96}{703.984} \\
& =0.8622 \\
\beta & =\cos ^{-1}(0.8622) \\
\Rightarrow \beta & =30^{\circ} 26^{\prime}
\end{aligned}
$$

Since in any triangle

$$
\begin{gathered}
\alpha+\beta+\gamma=180 \\
\Rightarrow \gamma=180-\alpha-\beta \\
=180^{\circ}-38^{\circ} 20^{\prime}-30^{\circ} 26^{\prime}
\end{gathered}
$$

$$
\gamma=111^{\circ} 14^{\prime}
$$

Question \# 3 Solve the following triangle $A B C$ in which:

$$
a=\sqrt{3}-1=0.732, \quad b=\sqrt{3}+1=2.732 \quad, \quad \gamma=60^{\circ}
$$

Solution

By law of cosine

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2}-a b \cos \gamma \\
& =(0.732)^{2}+(2.732)^{2}-2(0.732)(2.732) \cos 60^{\circ} \\
& =0.5358+7.4638-1.9998 \\
& =5.9998 \\
\Rightarrow c & =\sqrt{5.9998} \\
\Rightarrow \quad c & =2.449
\end{aligned}
$$

Again by law of cosines

$$
\begin{aligned}
\cos \alpha & =\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\
& =\frac{(2.732)^{2}+(2.449)^{2}-(0.732)}{2(2.732)(2.449)} \\
& =\frac{7.4638+5.9976-0.5358}{13.3813} \\
& =\frac{12.9256}{13.3813} \\
\cos \alpha & =0.9659 \\
\Rightarrow \alpha & =\cos ^{-1}(0.9659) \\
\Rightarrow \alpha & =15^{\circ}
\end{aligned}
$$

Since in any triangle

$$
\begin{aligned}
& \alpha+\beta+\gamma=180 \\
\Rightarrow & \beta=180-\alpha-\gamma \\
& =180-15-60 \\
\Rightarrow & \beta=105^{\circ}
\end{aligned}
$$

Question \# 4 Solve the following triangle $A B C$ in which:

$$
a=3 \quad, \quad b=6 \quad, \quad \gamma=36^{\circ} 20^{\prime}
$$

Solution

as above

$$
\downarrow
$$

Question \# 5 Solve the following triangle $A B C$ in which:

$$
a=7, \quad b=3, \quad \gamma=38^{\circ} 13^{\prime}
$$

Solution

Do yourself as above

Question \# 6 Solve the following triangle, using first law of tangent and then law of sines:

$$
a=36.21, \quad b=42.09, \gamma=44^{\circ} 29^{\prime}
$$

Solution

Since

$$
\begin{gather*}
\alpha+\beta+\gamma=180 \\
\Rightarrow \alpha+\beta=180-\gamma \\
=180-44^{\circ} 29^{\prime} \\
\Rightarrow \alpha+\beta=135^{\circ} 31^{\prime} \ldots \ldots . \tag{1}
\end{gather*}
$$

By law of tangent

$$
\begin{align*}
& \frac{a-b}{a+b}=\frac{\tan \left(\frac{\alpha-\beta}{2}\right)}{\tan \left(\frac{\alpha+\beta}{2}\right)} \\
& \frac{36.21-42.09}{36.21+42.09}=\frac{\tan \left(\frac{\alpha-\beta}{2}\right)}{\tan \left(\frac{135^{\circ} 31^{\prime}}{2}\right)} \\
& \Rightarrow \quad \frac{-5.88}{78.3}=\frac{\tan \left(\frac{\alpha-\beta}{2}\right)}{\tan \left(67^{\circ} 45^{\prime}\right)} \Rightarrow-0.0751=\frac{\tan \left(\frac{\alpha-\beta}{2}\right)}{2.4443} \\
& \Rightarrow \quad \tan \left(\frac{\alpha-\beta}{2}\right)=-0.0751(2.4443)=-0.1836 \\
& \Rightarrow \quad \quad \frac{\alpha-\beta}{2}=\tan ^{-1}(-0.1836) \\
& \Rightarrow \quad \frac{\alpha-\beta}{2}=-10^{\circ} 24^{\prime} \quad \Rightarrow \alpha-\beta=-20^{\circ} 48^{\prime} \ldots . . \tag{ii}
\end{align*}
$$

Adding (i) \& (ii)

$$
\begin{aligned}
\alpha+\beta & =135^{\circ} 31^{\prime} \\
\alpha-\beta & =-20^{\circ} 48^{\prime} \\
2 \alpha & =114^{\circ} 43^{\prime} \quad \Rightarrow \alpha=57^{\circ} 22^{\prime}
\end{aligned}
$$

Putting value of α in eq. (i)

$$
\begin{aligned}
& 57^{\circ} 22^{\prime}+\beta=135^{\circ} 22^{\prime} \\
\Rightarrow & \beta=135^{\circ} 22^{\prime}-57^{\circ} 22^{\prime} \Rightarrow \beta=78^{\circ} 9^{\prime}
\end{aligned}
$$

Now by law of sine

$$
\begin{aligned}
& \Rightarrow \frac{c}{\sin \gamma}=\frac{a}{\sin \alpha} \Rightarrow \frac{c}{\sin 44^{\circ} 29^{\prime}}=\frac{36.21}{\sin 57^{\circ} 22^{\prime}} \\
& \Rightarrow c=\frac{36.21}{\sin 57^{\circ} 22^{\prime}} \cdot \sin 44^{\circ} 29^{\prime} \\
&=\frac{36.21}{0.8421} \cdot 0.7007 \Rightarrow c=30.13
\end{aligned}
$$

Question \# 7, $8 \& 9$ Solve the following triangle, using first law of tangent and then law of sines:
(7) $a=93, \quad c=101$,
$\alpha=80^{\circ}$
(8) $b=14.8, c=16.1, \quad \alpha=42^{\circ} 45^{\prime}$
(9) $a=319, b=168, \quad \alpha=110^{\circ} 22^{\prime}$

Solution

Question \# 10 Solve the following triangle, using first law of tangent and then law of sines:

$$
b=61, c=32, \alpha=59^{\circ} 30^{\prime}
$$

Solution

$$
b=61, c=32, \alpha=59^{\circ} 30^{\prime}
$$

Since $\quad \alpha+\beta+\gamma=180$

$$
\begin{align*}
\Rightarrow \beta+\gamma & =180-\alpha \\
& =180-59^{\circ} 30^{\prime} \\
\Rightarrow \beta+\gamma & =120^{\circ} 30^{\prime} \ldots \ldots . \tag{i}
\end{align*}
$$

By law of tangent

$$
\begin{align*}
& \frac{b-c}{b+c}=\frac{\tan \left(\frac{\beta-\gamma}{2}\right)}{\tan \left(\frac{\beta+\gamma}{2}\right)} \Rightarrow \frac{61-32}{61+32}=\frac{\tan \left(\frac{\beta-\gamma}{2}\right)}{\tan \left(\frac{120^{\circ} 30^{\prime}}{2}\right)} \\
& \Rightarrow \frac{29}{93}=\frac{\tan \left(\frac{\beta-\gamma}{2}\right)}{\tan \left(60^{\circ} 15^{\prime}\right)} \Rightarrow 0.3118=\frac{\tan \left(\frac{\beta-\gamma}{2}\right)}{1.7496} \\
& \Rightarrow \tan \left(\frac{\beta-\gamma}{2}\right)=0.3118(1.7496) \\
& \Rightarrow \frac{\beta-\gamma}{2}=\tan ^{-1}(0.5455) \\
& \Rightarrow \frac{\beta-\gamma}{2}=28^{\circ} 37^{\prime} \quad \Rightarrow \beta-\gamma=57^{\circ} 14^{\prime} \ldots \ldots \ldots . .
\end{align*}
$$

Adding (i) \& (ii)

$$
\begin{aligned}
& \beta+\gamma=120^{\circ} 30^{\prime} \\
& \beta-\gamma=57^{\circ} 14^{\prime} \\
& \hline 2 \beta \quad=177^{\circ} 44^{\prime} \quad \Rightarrow \beta=88^{\circ} 52^{\prime}
\end{aligned}
$$

Putting value of α in eq. (i)

$$
\begin{aligned}
& 88^{\circ} 52^{\prime}+\gamma=120^{\circ} 30^{\prime} \\
\Rightarrow & \gamma=120^{\circ} 30^{\prime}-88^{\circ} 52^{\prime} \quad \Rightarrow \gamma=31^{\circ} 38^{\prime}
\end{aligned}
$$

Now by law of sine

$$
\frac{c}{\sin \gamma}=\frac{a}{\sin \alpha} \quad \Rightarrow \frac{32}{\sin 31^{\circ} 38^{\prime}}=\frac{a}{\sin 59^{\circ} 30^{\prime}}
$$

$$
\begin{aligned}
\Rightarrow c & =\frac{32}{\sin 31^{\circ} 38^{\prime}} \cdot \sin 59^{\circ} 30^{\prime} \\
& =\frac{32}{0.5244} \cdot 0.8616 \quad \Rightarrow c=52.57
\end{aligned}
$$

Question \# 11 Measure of two sides of the triangle are in the ratio $3: 2$ and they include an angle of measure 57°. Find the remaining two angles.

Solution

Let two sides of the triangle are a and b
i.e. $a: b=3: 2$ and $\gamma=57^{\circ}$

$$
\frac{a}{b}=\frac{3}{2} \Rightarrow a=\frac{3}{2} b
$$

Since

$$
\begin{align*}
& \alpha+\beta+\gamma=180 \\
& \alpha+\beta=180-\gamma \\
& \quad=180-57 \quad \Rightarrow \alpha+\beta=123^{\circ} \tag{i}
\end{align*}
$$

By law of tangent

$$
\begin{align*}
\frac{a-b}{a+b} & =\frac{\tan \left(\frac{\alpha-\beta}{2}\right)}{\tan \left(\frac{\alpha+\beta}{2}\right)} \\
\Rightarrow \frac{\frac{3}{2} b-b}{\frac{3}{2} b+b} & =\frac{\tan \left(\frac{\alpha-\beta}{2}\right)}{\tan \left(\frac{123^{\circ}}{2}\right)} \\
\Rightarrow \quad \frac{1}{\frac{2}{5} b} & =\frac{\tan \left(\frac{\alpha-\beta}{2}\right)}{\tan \left(61^{\circ} 30^{\prime}\right)} \\
\Rightarrow \quad \frac{1}{5} & =\frac{\tan \left(\frac{\alpha-\beta}{2}\right)}{1.8418} \\
\Rightarrow \tan \left(\frac{\alpha-\beta}{2}\right) & =\frac{1}{5}(1.8418)=0.3684 \\
\Rightarrow \operatorname{los} & =\tan { }^{-1}(0.3684)=20^{\circ} 13^{\prime} \Rightarrow \alpha-\beta=40^{\circ} 26^{\prime} \tag{ii}
\end{align*}
$$

Adding (i) \& (ii)

$$
\begin{aligned}
\alpha+\beta & =123^{\circ} \\
\alpha-\beta & =40^{\circ} 27^{\prime} \\
2 \alpha & =163^{\circ} 27^{\prime} \quad \Rightarrow \alpha=81^{\circ} 44^{\prime}
\end{aligned}
$$

Putting value of α in eq. (i)

$$
81^{\circ} 44^{\prime}+\beta=123^{\circ}
$$

$$
\Rightarrow \beta=123^{\circ}-81^{\circ} 44^{\prime} \quad \Rightarrow \beta=41^{\circ} 16^{\prime}
$$

remaining two angles are $\alpha=81^{\circ} 44^{\prime} \& \beta=41^{\circ} 16^{\prime}$

Question \# 12 Two forces of 40 N and 30 N are represented by $\overrightarrow{A B}$ and $\bar{B} C$ which are inclined at an angle of $147^{\circ} 25^{\prime}$. Find $\overrightarrow{A C}$, the resultant of $\overrightarrow{A B}$ and $\overrightarrow{B C}$.

Solution

Since $\overrightarrow{A B}=c=40 N$

$$
\begin{aligned}
\overrightarrow{B C} & =a=30 N \\
m \angle B & =\beta=147^{\circ} 25^{\prime} \\
\overrightarrow{A C} & =b=?
\end{aligned}
$$

By law of cosine

$$
\begin{aligned}
b^{2} & =c^{2}+a^{2}-2 c a \cos \beta \\
& =(40)^{2}+(30)^{2}-2(40)(30) \cos 147^{\circ} 25^{\prime} \\
& =1600+900-2400(-0.8426) \\
& =4522.26 \\
& =\sqrt{4522.26} \\
\Rightarrow \quad b & =67.248 \\
\overrightarrow{A C} & =67.248 \mathrm{~N}
\end{aligned}
$$

