Trigonometric Identities

Exercise 10.4 (Solution) for Class XI
Question \# 1 Express the following products as sums or differences:
(i) $2 \sin 3 \theta \cos \theta$
(ii) $2 \cos 5 \theta \cos 3 \theta$
(iii) $\sin 5 \theta \cos 2 \theta$
(iv) $2 \sin 7 \theta \sin 2 \theta$
(v) $\cos (x+y) \sin (x-y)$
(vii) $\sin 12^{\circ} \sin 46^{\circ}$
(viii) $\sin \left(x+45^{\circ}\right) \sin \left(x-45^{\circ}\right)$
(vi) $\cos \left(2 x+30^{\circ}\right) \cos \left(2 x-30^{\circ}\right)$

,Solution

(i) Since $2 \sin \alpha \cos \beta=\sin (\alpha+\beta)+\sin (\alpha-\beta)$

$$
\begin{aligned}
2 \sin 3 \theta \cos \theta & =\sin (3 \theta+\theta)+\sin (3 \theta-\theta) \\
& =\sin 4 \theta+\sin 2 \theta
\end{aligned}
$$

(ii) Since $2 \cos \alpha \cos \beta=\cos (\alpha+\beta)+\cos (\alpha-\beta)$

$$
\begin{aligned}
2 \cos 5 \theta \cos 3 \theta & =\cos (5 \theta+3 \theta)-\cos (5 \theta-3 \theta) \\
& =\cos 8 \theta-\cos 2 \theta
\end{aligned}
$$

(iii) Since $2 \sin \alpha \cos \beta=\sin (\alpha+\beta)+\sin (\alpha-\beta)$

$$
\begin{aligned}
2 \sin 5 \theta \cos 2 \theta & =\sin (5 \theta+2 \theta)+\sin (5 \theta-2 \theta) \\
& =\sin 7 \theta+\sin 3 \theta \\
\sin 5 \theta \cos 2 \theta & =\frac{\sin 7 \theta+\sin 3 \theta}{2}
\end{aligned}
$$

(iv) Since $-2 \sin \alpha \sin \beta=\cos (\alpha+\beta)-\cos (\alpha-\beta)$

$$
\begin{aligned}
-2 \sin 7 \theta \sin 2 \theta & =\cos (7 \theta+2 \theta)-\cos (7 \theta-2 \theta) \\
& =\cos 9 \theta-\cos 5 \theta \\
\sin 7 \theta \sin 2 \theta & =\frac{\cos 5 \theta-\cos 9 \theta}{2}
\end{aligned}
$$

(v) Since $2 \cos \alpha \sin \beta=\sin (\alpha+\beta)-\sin (\alpha-\beta)$

$$
\begin{aligned}
2 \cos (x+y) \sin (x-y) & =\sin (x+y+x-y)-\sin (x+y-x+y) \\
& =\sin 2 x-\sin 2 y
\end{aligned}
$$

$\Rightarrow \cos (x+y) \sin (x-y)=\frac{\sin 2 x-\sin 2 y}{2}$
(vi) Since $2 \cos \alpha \cos \beta=\cos (\alpha+\beta)+\cos (\alpha-\beta)$

$$
\begin{aligned}
2 \cos \left(2 x+30^{\circ}\right) \cos \left(2 x-30^{\circ}\right) & =\cos \left(2 x+30^{\circ}+2 x-30^{\circ}\right) \\
& =\cos (4 x)+\cos \left(60^{\circ}\right)+\cos \left(2 x+30^{\circ}-2 x+30^{\circ}\right) \\
\Rightarrow \quad \cos \left(2 x+30^{\circ}\right) \cos \left(2 x-30^{\circ}\right) & =\frac{\cos 4 x+\cos 60^{\circ}}{2}
\end{aligned}
$$

(vii) Since $\quad-2 \sin \alpha \sin \beta=\cos (\alpha+\beta)-\cos (\alpha-\beta)$

$$
-2 \sin 12^{\circ} \sin 46^{\circ}=\cos (12+46)-\cos (12-46) \quad \because \cos (-\theta)=\cos \theta
$$

$$
=\cos 58-\cos (-34)
$$

$$
=\cos 58-\cos 34
$$

$$
\Rightarrow \quad \sin 12^{\circ} \sin 46^{\circ}=\frac{\cos 34-\cos 58}{2}
$$

(viii) Since $\quad-2 \sin \alpha \sin \beta=\cos (\alpha+\beta)-\cos (\alpha-\beta)$

$$
\begin{aligned}
-2 \sin \left(x+45^{\circ}\right) \sin \left(x-45^{\circ}\right) & =\cos \left\{\left(x+45^{\circ}\right)+\left(x-45^{\circ}\right)\right\}-\cos \left\{\left(x+45^{\circ}\right)-\left(x-45^{\circ}\right)\right\} \\
& =\cos 2 x-\cos 90^{\circ}
\end{aligned}
$$

$\Rightarrow \quad \sin \left(x+45^{\circ}\right) \sin \left(x-45^{\circ}\right)=\frac{\cos 90^{\circ}-\cos 2 x}{2}$

Question \#2 Express the following sum or difference as product:
(i) $\sin 5 \theta+\sin 3 \theta$
(ii) $\sin 8 \theta-\sin 4 \theta$
(iii) $\cos 6 \theta+\cos 3 \theta$
(iv) $\cos 7 \theta-\cos \theta$
(v) $\cos 12^{\circ}+\cos 48^{\circ}$
(vi) $\sin \left(x+30^{\circ}\right)+\sin \left(x-30^{\circ}\right)$

Solution

(i) Since $\sin \alpha+\sin \beta=2 \sin \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)$

$$
\begin{aligned}
\sin 5 \theta+\sin 3 \theta & =2 \sin \left(\frac{5 \theta+3 \theta}{2}\right) \cos \left(\frac{5 \theta-3 \theta}{2}\right) \\
& =2 \sin \left(\frac{8 \theta}{2}\right) \cos \left(\frac{2 \theta}{2}\right) \\
& =2 \sin 4 \theta \cos \theta
\end{aligned}
$$

(ii) Since $\sin \alpha-\sin \beta=2 \cos \left(\frac{\alpha+\beta}{2}\right) \sin \left(\frac{\alpha-\beta}{2}\right)$

$$
\begin{aligned}
\sin 8 \theta-\sin 4 \theta & =2 \cos \left(\frac{8 \theta+4 \theta}{2}\right) \sin \left(\frac{8 \theta-4 \theta}{2}\right) \\
& =2 \cos 6 \theta \sin 2 \theta
\end{aligned}
$$

(iii)
(iv) Since $\cos \alpha-\cos \beta=-2 \sin \left(\frac{\alpha+\beta}{2}\right) \sin \left(\frac{\alpha-\beta}{2}\right)$

$$
\begin{aligned}
\cos 7 \theta-\cos \theta & =-2 \sin \left(\frac{7 \theta+\theta}{2}\right) \sin \left(\frac{7 \theta-\theta}{2}\right) \\
& =-2 \sin \left(\frac{8 \theta}{2}\right) \sin \left(\frac{6 \theta}{2}\right)=-2 \sin 4 \theta \sin 3 \theta
\end{aligned}
$$

(v) Since $\cos \alpha+\cos \beta=2 \cos \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)$

$$
\begin{aligned}
\cos 12+\cos 48 & =2 \cos \left(\frac{12+48}{2}\right) \cos \left(\frac{12-48}{2}\right) \\
& =2 \cos \left(\frac{60}{2}\right) \cos \left(\frac{-36}{2}\right) \\
& =2 \cos 30 \cos (-18) \\
& =2 \cos 30^{\circ} \cos 18^{\circ} \quad \because \cos (-\theta)=\cos \theta
\end{aligned}
$$

(vi) Since $\sin \alpha+\sin \beta=2 \sin \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)$

$$
\begin{aligned}
\sin (x+30)+\sin (x-30) & =2 \sin \left(\frac{x+30+x-30}{2}\right) \cos \left(\frac{x+30-x+30}{2}\right) \\
& =2 \sin \left(\frac{2 x}{2}\right) \cos \left(\frac{60}{2}\right)=2 \sin x \cos 30
\end{aligned}
$$

Question \#3 Prove the following identities:
(i) $\frac{\sin 3 x-\sin x}{\cos x-\cos 3 x}=\cot 2 x$
(ii) $\frac{\sin 8 x+\sin 2 x}{\cos 8 x+\cos 2 x}=\tan 5 x$
(iii) $\frac{\sin \alpha-\sin \beta}{\sin \alpha+\sin \beta}=\cot \left(\frac{\alpha+\beta}{2}\right) \tan \left(\frac{\alpha-\beta}{2}\right)$

Solution

(i) L.H.S $=\frac{\sin 3 x-\sin x}{\cos x-\cos 3 x}$

$$
\begin{aligned}
& =\frac{2 \cos \left(\frac{3 x+x}{2}\right) \sin \left(\frac{3 x-x}{2}\right)}{-2 \sin \left(\frac{x+3 x}{2}\right) \sin \left(\frac{x-3 x}{2}\right)} \\
& =\frac{\cos \left(\frac{4 x}{2}\right) \sin \left(\frac{2 x}{2}\right)}{-\sin \left(\frac{4 x}{2}\right) \sin \left(\frac{-2 x}{2}\right)} \\
& =\frac{\cos (2 x) \sin (x)}{+\sin (2 x) \sin (x)} \\
& =\cot 2 x=\text { R.H.S }
\end{aligned}
$$

(ii) L.H.S $=\frac{\sin 8 x+\sin 2 x}{\cos 8 x+\cos 2 x}$

$$
\begin{aligned}
& \not 2 \sin \left(\frac{8 x+2 x}{2}\right) \cos \left(\frac{8 x-2 x}{2}\right) \\
= & \not 2 \cos \left(\frac{8 x+2 x}{2}\right) \cos \left(\frac{8 x-2 x}{2}\right) \\
= & \frac{\sin \left(\frac{10 x}{2}\right)}{\cos \left(\frac{10 x}{2}\right)} \\
= & \frac{\sin 5 x}{\cos 5 x} \\
= & \tan 5 x=\text { R.H.S }
\end{aligned}
$$

(iii) L.H.S $=\frac{\sin \alpha-\sin \beta}{\sin \alpha+\sin \beta}$

$$
\begin{aligned}
& =\frac{2 \cos \left(\frac{\alpha+\beta}{2}\right) \sin \left(\frac{\alpha-\beta}{2}\right)}{2 \sin \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)} \\
& =\cot \left(\frac{\alpha+\beta}{2}\right) \tan \left(\frac{\alpha-\beta}{2}\right)=\text { R.H.S }
\end{aligned}
$$

Question \# 4 Prove that:
(i) $\cos 20^{\circ}+\cos 100^{\circ}+\cos 140^{\circ}=0$
(ii) $\sin \left(\frac{\pi}{4}-\theta\right) \sin \left(\frac{\pi}{4}+\theta\right)=\frac{1}{2} \cos 2 \theta$

$$
\text { (iii) } \frac{\sin \theta+\sin 3 \theta+\sin 5 \theta+\sin 7 \theta}{\cos \theta+\cos 3 \theta+\cos 5 \theta+\cos 7 \theta}=\tan 4 \theta
$$

Solution

(i) L.H.S $=\cos 20^{\circ}+\cos 100^{\circ}+\cos 140^{\circ}$

$$
\begin{aligned}
& =\left(\cos 100^{\circ}+\cos 20^{\circ}\right)+\cos 140^{\circ} \\
& =2 \cos \left(\frac{100+20}{2}\right) \cos \left(\frac{100-20}{2}\right)+\cos 140^{\circ} \\
& =2 \cos 60^{\circ} \cos 40^{\circ}+\cos 140^{\circ} \\
& =2\left(\frac{1}{2}\right) \cos 40^{\circ}+\cos 140^{\circ} \\
& =\cos 60^{\circ}=\frac{1}{2} \\
& =2 \cos \left(\frac{140+40}{2}\right) \cos \left(\frac{140-40}{2}\right) \\
& =2 \cos 90^{\circ} \cos 50^{\circ} \\
& =2(0) \cos 50^{\circ}=0=\text { R.H.S }
\end{aligned}
$$

(ii) L.H.S $=\sin \left(\frac{\pi}{4}-\theta\right) \sin \left(\frac{\pi}{4}+\theta\right)$

$$
\begin{aligned}
& =\left(\sin \frac{\pi}{4} \cos \theta-\cos \frac{\pi}{4} \sin \theta\right)\left(\sin \frac{\pi}{4} \cos \theta+\cos \frac{\pi}{4} \sin \theta\right) \\
& =\left(\frac{1}{\sqrt{2}} \cos \theta-\frac{1}{\sqrt{2}} \sin \theta\right)\left(\frac{1}{\sqrt{2}} \cos \theta+\frac{1}{\sqrt{2}} \sin \theta\right) \\
& =\left(\frac{1}{\sqrt{2}} \cos \theta\right)^{2}-\left(\frac{1}{\sqrt{2}} \sin \theta\right)^{2}=\frac{1}{2} \cos ^{2} \theta-\frac{1}{2} \sin ^{2} \theta \\
& =\frac{1}{2}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)=\frac{1}{2} \cos 2 \theta=\text { R.H.S }
\end{aligned}
$$

(iii) L.H.S $=\frac{\sin \theta+\sin 3 \theta+\sin 5 \theta+\sin 7 \theta}{\cos \theta+\cos 3 \theta+\cos 5 \theta+\cos 7 \theta}$

$$
\begin{aligned}
& =\frac{(\sin 7 \theta+\sin \theta)+(\sin 5 \theta+\sin 3 \theta)}{(\cos 7 \theta+\cos \theta)+(\cos 5 \theta+\cos 3 \theta)} \\
& =\frac{2 \sin \left(\frac{7 \theta+\theta}{2}\right) \cos \left(\frac{7 \theta-\theta}{2}\right)+2 \sin \left(\frac{5 \theta+3 \theta}{2}\right) \cos \left(\frac{5 \theta-3 \theta}{2}\right)}{2 \cos \left(\frac{7 \theta+\theta}{2}\right) \cos \left(\frac{7 \theta-\theta}{2}\right)+2 \cos \left(\frac{5 \theta+3 \theta}{2}\right) \cos \left(\frac{5 \theta-3 \theta}{2}\right)} \\
& =\frac{2 \sin 4 \theta \cos 3 \theta+2 \sin 4 \theta \cos \theta}{2 \cos 4 \theta \cos 3 \theta+2 \cos 4 \theta \cos \theta} \\
& =\frac{2 \sin 4 \theta(\cos 3 \theta+\cos \theta)}{2 \cos 4 \theta(\cos 3 \theta+\cos \theta)}=\frac{\sin 4 \theta}{\cos 4 \theta}=\tan 4 \theta=\text { R.H.S }
\end{aligned}
$$

Question \# 5

Prove that:
(i) $\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ}=\frac{1}{16}$
(ii) $\sin \frac{\pi}{9} \sin \frac{2 \pi}{9} \sin \frac{\pi}{3} \sin \frac{4 \pi}{9}=\frac{3}{16}$

Solution

(i) L.H.S $=\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ}$

$$
\begin{aligned}
& =\cos 20^{\circ} \cos 40^{\circ}\left(\frac{1}{2}\right) \cos 80^{\circ}=\frac{1}{2} \cos 80^{\circ} \cos 40^{\circ} \cos 20^{\circ} \\
& =\frac{1}{4}\left(2 \cos 80^{\circ} \cos 40^{\circ}\right) \cos 20^{\circ}=\frac{1}{4}(\cos (80+40)+\cos (80-40)) \cos 20^{\circ} \\
& =\frac{1}{4}\left(\cos 120^{\circ}+\cos 40^{\circ}\right) \cos 20^{\circ}=\frac{1}{4}\left(-\frac{1}{2}+\cos 40^{\circ}\right) \cos 20^{\circ} \\
& =\sin \frac{180^{\circ}}{9} \sin \frac{2\left(180^{\circ}\right)}{9} \sin \frac{\left(180^{\circ}\right)}{3} \sin \frac{4\left(180^{\circ}\right)}{9} \quad \because \pi=180^{\circ}
\end{aligned}
$$

$$
=\sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ}=\sin 20^{\circ} \sin 40^{\circ} \frac{\sqrt{3}}{2} \sin 80^{\circ}
$$

$$
=\frac{\sqrt{3}}{2} \sin 80^{\circ} \sin 40^{\circ} \sin 20^{\circ}=-\frac{\sqrt{3}}{4}\left(-2 \sin 80^{\circ} \sin 40^{\circ}\right) \sin 20^{\circ}
$$

$=-\frac{\sqrt{3}}{4}(\cos (80+40)-\cos (80-40)) \sin 20^{\circ}$
$=-\frac{\sqrt{3}}{4}\left(\cos 120^{\circ}-\cos 40^{\circ}\right) \sin 20^{\circ}=-\frac{\sqrt{3}}{4}\left(-\frac{1}{2}-\cos 40^{\circ}\right) \sin 20^{\circ}$
$=\frac{\sqrt{3}}{8} \sin 20^{\circ}+\frac{\sqrt{3}}{4} \cos 40^{\circ} \sin 20^{\circ}=\frac{\sqrt{3}}{8} \sin 20^{\circ}+\frac{\sqrt{3}}{8}\left(2 \cos 40^{\circ} \sin 20^{\circ}\right)$
$=\frac{\sqrt{3}}{8} \sin 20^{\circ}+\frac{\sqrt{3}}{8}(\sin (40+20)-\sin (40-20))$
$=\frac{\sqrt{3}}{8} \sin 20^{\circ}+\frac{\sqrt{3}}{8}\left(\sin 60^{\circ}-\sin 20^{\circ}\right)=\frac{\sqrt{3}}{8} \sin 20^{\circ}+\frac{\sqrt{3}}{8}\left(\frac{\sqrt{3}}{2}-\sin 20^{\circ}\right)$
$=\frac{\sqrt{3}}{8} \sin 20^{\circ}+\frac{3}{16}-\frac{\sqrt{3}}{8} \sin 20^{\circ}=\frac{3}{16}=$ R.H.S

