Trigonometric Identities

Question \# 1 Prove that
(i) $\sin \left(180^{\circ}+\theta\right)=-\sin \theta$
(ii) $\cos \left(180^{\circ}+\theta\right)=-\cos \theta$
(iii) $\tan \left(270^{\circ}-\theta\right)=\cot \theta$
(iv) $\cos \left(\theta-180^{\circ}\right)=-\cos \theta$
(v) $\cos \left(270^{\circ}+\theta\right)=\sin \theta$
(vi) $\sin \left(\theta+270^{\circ}\right)=4 \cos \theta$
(vii) $\tan \left(180^{\circ}+\theta\right)=\tan \theta$
(viii) $\cos \left(360^{\circ}-\theta\right)=\cos \theta$

Question \# 2 Find the values of the following:
(i) $\sin 15^{\circ}$
(ii) $\cos 15^{\circ}$
(iii) $\tan 15^{\circ}$

Question \# 3 Prove that:
(i) $\sin \left(45^{\circ}+\alpha\right)=\frac{1}{\sqrt{2}}(\sin \alpha+\cos \alpha)$
(ii) $\cos \left(45^{\circ}+\alpha\right)=\frac{1}{\sqrt{2}}(\cos \beta-\sin \alpha)$

Question \# 4 Prove that:
(i) $\tan (45+A) \tan (45-A)=1$
(ii) $\tan \left(\frac{\pi}{4}-\theta\right)+\tan \left(\frac{3 \pi}{4}+\theta\right)=0$
(iii) $\sin \left(\theta+\frac{\pi}{6}\right)+\cos \left(\theta+\frac{\pi}{3}\right)=\cos \theta$
$\sin \theta-\cos \theta \tan \frac{\theta}{2}$
(iv) $\frac{\sin \theta-\cos \theta \tan \frac{\theta}{2}}{\cos \theta+\sin \theta \tan \frac{\theta}{2}}=\tan \frac{\theta}{2}$
(v) $\frac{1-\tan \theta \tan \varphi}{1+\tan \theta \tan \varphi}=\frac{\cos (\theta+\varphi)}{\cos (\theta-\varphi)}$

Question \# 5 Show that:
$\cos (\alpha+\beta) \cos (\alpha-\beta)=\cos ^{2} \alpha-\sin ^{2} \beta=\cos ^{2} \beta-\sin ^{2} \alpha$
Question \# 6 Show that:

$$
\frac{\sin (\alpha+\beta)+\sin (\alpha-\beta)}{\cos (\alpha+\beta)+\cos (\alpha-\beta)}=\tan \alpha
$$

Question \# 7 Show that
(i) $\cot (\alpha+\beta)=\frac{\cot \alpha \cot \beta-1}{\cot \alpha+\cot \beta}$
(ii) $\cot (\alpha-\beta)=\frac{\cot \alpha \cot \beta+1}{\cot \beta-\cot \alpha}$
(iii) $\frac{\tan \alpha+\tan \beta}{\tan \alpha-\tan \beta}=\frac{\sin (\alpha+\beta)}{\sin (\alpha-\beta)}$

Question \#8 If $\sin \alpha=\frac{4}{5}$ and $\cos \alpha=\frac{40}{41}$ where $0<\alpha<\frac{\pi}{2}$ and $0<\beta<\frac{\pi}{2}$.
Show that $\sin (\alpha-\beta)=\frac{133}{205}$
Question \# 9 If $\sin \alpha=\frac{4}{5}$ and $\sin \beta=\frac{12}{13}$ where $\frac{\pi}{2}<\alpha<\pi$ and $\frac{\pi}{2}<\beta<\pi$. Find
(i) $\sin (\alpha+\beta)$
(ii) $\cos (\alpha+\beta)$
(iii) $\tan (\alpha+\beta)$
(vi) $\tan (\alpha-\beta)$
(iv) $\sin (\alpha-\beta)$
(v) $\cos (\alpha-\beta)$

In which quadrant do the terminal sides of the angles ofmeasures $(\alpha+\beta)$ and $(\alpha-\beta)$ lie

Question \# 10 Find $\sin (\alpha+\beta)$ and $\cos (\alpha+\beta)$, given that
(i) $\tan \alpha=\frac{3}{4}, \sin \beta=\frac{5}{13}$ and neither the terminal side of the angle of measure α nor that of β is in the quadrant.
(ii) $\tan \alpha=-\frac{15}{8}, \sin \beta=-\frac{7}{25}$ and neither the terminal side of the angle of measure α nor that of β is in the IV quadrant.

Question \# 11 Prove that:
$\frac{\cos 8^{\circ}-\sin 8^{\circ}}{\cos 8^{\circ}+\sin 8^{\circ}}=\tan 37^{\circ}$
Question \# 12 If α, β, γ are the angles of a tringle $A B C$, show that $\cot \frac{\beta}{2}+\cot \frac{\alpha}{2}+\cot \frac{\gamma}{2}=\cot \frac{\alpha}{2} \cot \frac{\beta}{2} \cot \frac{\gamma}{2}$

Question \# 13.If $\alpha+\beta+\gamma=180^{\circ}$, show that $\cot \alpha \cot \beta+\cot \beta \cot \gamma+\cot \gamma \cot \alpha=1$

Question \# 14 Express the following in the form $r \sin (\theta+\phi)$ or $r \sin (\theta-\phi)$, where terminal sides of the angles of measure θ and ϕ are in the first quadrant:
(i) $12 \sin \theta+5 \cos \theta$
(ii) $3 \sin \theta-4 \cos \theta$
(iii) $\sin \theta-\cos \theta$
(iv) $5 \sin \theta-4 \cos \theta$
(v) $\sin \theta+\cos \theta$

